scholarly journals Serum prolactin levels in the prepubertal period in male and female rats. Control by photoperiod and gonadal status and relationship to puberty onset

1981 ◽  
Vol 4 (1-6) ◽  
pp. 91-104 ◽  
Author(s):  
Judith A. Ramaley
1976 ◽  
Vol 83 (2) ◽  
pp. 269-279 ◽  
Author(s):  
K. D. Döhler ◽  
W. Wuttke

ABSTRACT Diurnal variations in serum hormone levels during 2 different stages of prepubertal development were investigated in male and female rats. Groups of 13 to 18 and 25 to 30 day old male and female rats were decapitated at 4-hour by intervals during a period of 24 h. Their blood was collected and hormones were measured by radio-immunoassay. FSH levels were constantly high in 13 to 18, but low in 25 to 30 day old females. FSH was low in younger males, and significantly higher but without diurnal fluctuations in the older males. Serum LH was low in approximately 40% of the 13 to 18 day old females, while 40% had moderately high levels, and the remaining females extremely high levels of the hormone. Most of the extremely high LH peaks were found at 15.00 h and some at 03.00 h. Older females and males of both age groups had constantly low serum LH levels. Serum oestradiol was high in males and females during days 13 to 18, but it was lower in the 25 to 30 day old animals. In the young females prolactin was slightly elevated between 15.00 h and 19.00 h, while in the males the serum prolactin fluctuations were not significant. Serum testosterone was low in females at all times. The 13 to 18 day old males had higher testosterone levels than the 25 to 30 day old males. Both groups showed slight, but insignificant fluctuations in serum testosterone. These results confirm result published previously and furthermore they demonstrate the existence of circasemedian or circadian rhythms for both the gonadotrophins and gonadal steroids. These results, also suggest that the maturation of the positive feedback action of oestradiol on gonadotrophin release in female rats occurs between day 10 and 20.


1984 ◽  
Vol 102 (2) ◽  
pp. 215-223 ◽  
Author(s):  
R. N. Clayton ◽  
L. C. Bailey

ABSTRACT The effect of drug-induced hypo- and hyperprolactinaemia on pituitary gonadotrophin releasing hormone receptors (GnRH-R), serum and pituitary gonadotrophins (LH and FSH) and prolactin was investigated in intact adult male and female rats. Hypoprolactinaemia (serum prolactin <20% of control values) resulting from dopamine agonist (bromocriptine) infusion (4 mg/kg per day for 7 days) was accompanied by a 40–50% increase in GnRH-R in both male and female animals, though this was not accompanied by any major change in serum or pituitary LH and FSH. Hyperprolactinaemia (serum prolactin greater than ten times control values) induced by the dopamine receptor antagonist metoclopramide (65 mg/kg per day for 7 days) increased GnRH-R between 35 and 45% in both male and female rats without altering serum gonadotrophins. Domperidone (1 mg twice daily for 14 days) also increased GnRH-R by 50% but only in female rats. Both dopamine antagonists significantly increased pituitary prolactin content. Pituitary FSH increased in female rats treated with both metoclopramide and domperidone. The stimulatory effects of bromocriptine and metoclopramide on GnRH-R in male rats were prevented by concurrent treatment with a GnRH antiserum, suggesting that the drug effects were mediated through alteration in endogenous GnRH secretion. Induction of massive (serum prolactin > 2000 μg/l) hyperprolactinaemia in male and female rats with a transplantable prolactin-secreting pituitary tumour did not reduce GnRH-R concentration, although serum gonadotrophins were suppressed and pituitary gonadotrophin content was increased. These results indicate a dissociation between serum prolactin concentrations and pituitary GnRH receptor content and indicate that dopamine agonist and antagonist agents can influence GnRH-R independently of prolactin, possibly by acting on central dopamine receptors responsible for catecholaminergic regulation of GnRH secretion. J. Endocr. (1984) 102, 215–223


1961 ◽  
Vol 38 (1) ◽  
pp. 50-58 ◽  
Author(s):  
N. E. Borglin ◽  
L. Bjersing

ABSTRACT Oestriol (oestra-1,3,5(10)-triene-3,16α,17β-triol) is a weakly oestrogenic substance which, however, in contrast to what was formerly believed, is of physiological significance. Its effect is localized largely to the uterine cervix and vagina. Clinical experience argues both for and against an effect on the pituitary gland. This investigation is concerned with the morphological changes in the pituitary gland and adrenal cortex of gonadectomized male and female rats after the injection of oestriol. It was found that oestriol has the same type of action on these glands as other oestrogens, but under the experimental conditions used, this effect proved much weaker than that produced by oestradiol (oestra-1,3,5(10)-triene-3,17β-diol).


1973 ◽  
Vol 74 (1) ◽  
pp. 88-104 ◽  
Author(s):  
T. Jolín ◽  
M. J. Tarin ◽  
M. D. Garcia

ABSTRACT Male and female rats of varying ages were placad on a low iodine diet (LID) plus KClO4 or 6-propyl-2-thiouracil (PTU) or on the same diet supplemented with I (control rats). Goitrogenesis was also induced with LID plus PTU in gonadectomized animals of both sexes. The weight of the control and goitrogen treated animals, and the weight and iodine content of their thyroids were determined, as well as the plasma PBI, TSH, insulin and glucose levels. The pituitary GH-like protein content was assessed by disc electrophoresis on polyacrylamide gels. If goitrogenesis was induced in young rats of both sexes starting with rats of the same age, body weight (B.W.) and pituitary growth hormone (GH) content, it was found that both the males and females developed goitres of the same size. On the contrary, when goitrogenesis was induced in adult animals, it was found that male rats, that had larger B.W. and pituitary GH content than age-paired females, developed larger goitres. However, both male and female rats were in a hypothyroid condition of comparable degree as judged by the thyroidal iodine content and the plasma PBI and TSH levels. When all the data on the PTU or KClO4-treated male and female rats of varying age and B.W. were considered together, it was observed that the weights of the thyroids increased proportionally to B.W. However, a difference in the slope of the regression of the thyroid weight over B.W. was found between male and female rats, due to the fact that adult male rats develop larger goitres than female animals. In addition, in the male rats treated with PTU, gonadectomy decreased the B.W., pituitary content of GH-like protein and, concomitantly, the size of the goitre decreased; an opposite effect was induced by ovariectomy on the female animals. However, when goitrogenesis was induced in weight-paired adult rats of both sexes, the male animals still developed larger goitres than the females. Among all the parameters studied here, the only ones which appeared to bear a consistent relationship with the size of the goitres in rats of different sexes, treated with a given goitrogen, were the rate of body growth and the amount of a pituitary GH-like protein found before the onset of the goitrogen treatment. Moreover, though the pituitary content of the GH-like protein decreased as a consequence of goitrogen treatment, it was still somewhat higher in male that in female animals. The present results suggest that GH may somehow be involved in the mechanism by which male and female rats on goitrogens develop goitres of different sizes, despite equally high plasma TSH levels.


1968 ◽  
Vol 58 (4) ◽  
pp. 600-612 ◽  
Author(s):  
Robert Boyd ◽  
Donald C. Johnson

ABSTRACT The effects of various doses of testosterone propionate (TP) upon the release of luteinizing hormone (LH or ICSH) from the hypophysis of a gonadectomized male or female rat were compared. Prostate weight in hypophysectomized male parabiotic partners was used to evaluate the quantity of circulating LH. Hypophyseal LH was measured by the ovarian ascorbic acid depletion method. Males castrated when 45 days old secreted significantly more LH and had three times the amount of pituitary LH as ovariectomized females. Administration of 25 μg TP daily reduced the amount of LH in the plasma, and increased the amount in the pituitary gland, in both sexes. Treatment with 50 μg caused a further reduction in plasma LH in males, but not in females, while pituitary levels in both were equal to that of their respective controls. LH fell to the same low level in partners of males or females receiving 100 μg TP. When gonadectomized at 39 days, males and females had the same amount of plasma LH, but males had more stored hormone. Pituitary levels were unchanged from controls following treatment with 12.5, 25 or 50 μg TP daily, but plasma values dropped an equal amount in both sexes with the latter two doses. Androgenized males or females, gonadectomized when 39 days old, were very sensitive to the effects of TP and plasma LH was significantly reduced with 12.5 μg daily. Pituitary LH in androgenized males was higher than that of normal males but was reduced to normal by small amounts of TP. The amount of stored LH in androgenized females was not different from that of normal females and it was unchanged by any dose of TP tested. Results are consistent with the conclusion that the male hypothalamic-hypophyseal axis is at least as sensitive as the female axis to the negative feedback effects of TP. Androgenization increases the sensitivity to TP in both males and females.


1988 ◽  
Vol 117 (4_Suppl) ◽  
pp. S191-S192
Author(s):  
M. STOPPOK ◽  
H. SCHRIEFERS ◽  
E. R. LAX

Sign in / Sign up

Export Citation Format

Share Document