The performance of several oxygen scavengers in varying oxygen environments at refrigerated temperatures: implications for low-oxygen modified atmosphere packaging of meat

2009 ◽  
Vol 44 (1) ◽  
pp. 188-196 ◽  
Author(s):  
Karen Brandon ◽  
Michelle Beggan ◽  
Paul Allen ◽  
Francis Butler
HortScience ◽  
2012 ◽  
Vol 47 (8) ◽  
pp. 1113-1116 ◽  
Author(s):  
M. Helena Gomes ◽  
Randolph M. Beaudry ◽  
Domingos P.F. Almeida

The respiratory behavior of fresh-cut melon under modified atmosphere packaging at various temperatures was characterized to assess the potential for shelf life extension through low-oxygen and to generate information for the development of appropriate packaging conditions. Cantaloupe melon (Cucumis melo var. cantalupensis ‘Olympic Gold’) cubes were packaged and stored at 0, 5, 10, and 15 °C. Packages attained gas equilibrium after 5 days at 10 °C, 6 days at 5 °C, and 10 days at 0 °C. In cubes stored at 15 °C, decay started before steady-state gas levels were reached. Respiration rates were measured and respiratory quotient calculated once steady-state O2 and CO2 partial pressures were achieved inside the packages. O2 uptake increased with temperature and O2 partial pressure (pO2 pkg), according to a Michaelis-Menten kinetics described by = [( × pO2 pkg)/( + pO2 pkg)]. Respiratory parameters were modeled as an exponential function of temperature: = {[1.34 × 10−17 × e(0.131 × T) × pO2 pkg]/[1.15 × 10−24 × e(0.193 × T) + pO2 pkg]} (R2 = 0.95), Q10 = 3.7, and Ea = 84 kJ·mol−1. A good fit to the experimental data was also obtained considering as constant: RO2 = {[4.36 × 10−14 × e(0.102 × T) × pO2 pkg]/[0.358 + pO2 pkg]} (R2 = 0.93), Q10 = 2.8, and Ea = 66 kJ·mol−1. These results provide fundamental information to predict package permeability and steady-state pO2 pkg required to prevent anaerobic conditions and maximize shelf life of fresh-cut cantaloupe. The kinetics of respiration as a function of pO2 suggests that no significant reductions in respiration rate of fresh-cut cantaloupe can be achieved by lowering O2 levels.


2008 ◽  
Vol 71 (2) ◽  
pp. 293-301 ◽  
Author(s):  
J. C. BROOKS ◽  
M. ALVARADO ◽  
T. P. STEPHENS ◽  
J. D. KELLERMEIER ◽  
A. W. TITTOR ◽  
...  

Two separate studies, one with pathogen-inoculated product and one with noninoculated product, were conducted to determine the safety and spoilage characteristics of modified atmosphere packaging (MAP) and traditional packaging of ground beef patties. Ground beef patties were allotted to five packaging treatments (i) control (foam tray with film overwrap; traditional), (ii) high-oxygen MAP (80% O2, 20% CO2), (iii) high-oxygen MAP with added rosemary extract, (iv) low-oxygen carbon monoxide MAP (0.4% CO, 30% CO2, 69.6% N2), and (v) low-oxygen carbon monoxide MAP with added rosemary extract. Beef patties were evaluated for changes over time (0, 1, 3, 5, 7, 14, and 21 days) during lighted display. Results indicated low-oxygen carbon monoxide gas flush had a stabilizing effect on meat color after the formation of carboxymyoglobin and was effective for preventing the development of surface discoloration. Consumers indicated that beef patties packaged in atmospheres containing carbon monoxide were more likely to smell fresh at 7, 14, and 21 days of display, but the majority would probably not consume these products after 14 days of display because of their odor. MAP suppressed the growth of psychrophilic aerobic bacteria when compared with control packages. Generally, control packages had significantly higher total aerobic bacteria and Lactobacillus counts than did modified atmosphere packages. In the inoculated ground beef (approximately 105 CFU/g) in MAP, Escherichia coli O157 populations ranged from 4.51 to 4.73 log CFU/g with no differences among the various packages, but the total E. coli O157:H7 in the ground beef in the control packages was significantly higher at 5.61 log CFU/g after 21 days of storage. On days 14 and 21, the total Salmonella in the ground beef in control packages was at 5.29 and 5.27 log CFU/g, respectively, which was significantly higher than counts in the modified atmosphere packages (3.99 to 4.31 log CFU/g on day 14 and 3.76 to 4.02 log CFU/g on day 21). Data from these studies indicate that MAP suppresses pathogen growth compared with controls and that spoilage characteristics developed in MAP packages.


2008 ◽  
Vol 18 (2) ◽  
pp. 261-265 ◽  
Author(s):  
Celia M. Cantín ◽  
Carlos H. Crisosto ◽  
Kevin R. Day

The influence of modified atmosphere packaging (MAP) on quality attributes and shelf life performance of ‘Friar’ plums (Prunus salicina) was studied. Plums were stored at 0 °C and 85% relative humidity for a 60-day period in five different box liners (LifeSpan L316, FF-602, FF-504, 2.0% vented area perforated, and Hefty liner) and untreated (control). Flesh firmness, soluble solids concentration, titratable acidity, and pH were unaffected by the box liners. Fruit skin color changes were repressed on plums packed in box liners that modified gas levels and weight loss was reduced by the use of any of the box liners. Plums packed without box liners (bulk-packed) had ≈6% weight loss. High carbon dioxide (CO2) and low oxygen (O2) levels were measured in boxes with MAP box liners (LifeSpan L316, FF-602, and FF-504). Percentage of healthy fruit was unaffected by any of the treatments during the ripening period (shelf life) after 45 days of cold storage. However, after 60 days of cold storage, fruit from the MAP box liners with higher CO2 and lower O2 levels had a higher incidence of chilling injury (CI) symptoms, evident as flesh translucency, gel breakdown, and “off flavor” than fruit from the other treatments. Overall, results indicate that the use of MAP box liners is recommended to improve market life of ‘Friar’ plums up to 45 days cold storage. However, the use of box liners without gas control capability may lead to CI symptoms in fruit cold-stored for longer periods.


2020 ◽  
Vol 1 (1) ◽  
pp. 11-20
Author(s):  
Erika Pardede

Being living organs, fresh harvested fruits and vegetables remain metabolically active and undergo ripening and senescence processes. They needs oxygen to stay alive, which is vital for energy production through respiration process. Modified Atmosphere Packaging (MAP) technology utilises in-packaging equilibrium atmosphere, in which the relatively low oxygen and high carbondioxide concentration is achieved naturally inside the package as respiration occurs, which later on leads to a lower respiration rate. Low oxygen concentration could also be achieved by replacing some oxygen with nitrogen and/or application of oxygen scavenger inside in package, thus the respiration rate is reduced and the aging process is retarded. The use of packaging films of correct intermediary permiability to meet a desirable equilibrium modified atmosphere become a key to the succes of MAP. A new technique, so called Perforation-Mediated Modified Atmosphere Packaging (PM-MAP), by having microperforation in the plastic films is applied to correct the exchange of air during storage. Therefore Modified Atmosphere Packaging (MAP) technology offers advantages which leads to extension of the shelf life of fresh produces. Fresh and fresh-cut food industry utilise this advantages to meet the growing demand of convinient and fresh quality fruits and vegetables, in order to maintain freshness quality attributes and to extend the shelf life.


2000 ◽  
Vol 10 (3) ◽  
pp. 491-500 ◽  
Author(s):  
Randolph M. Beaudry

The application of low oxygen through modified atmosphere packaging (MAP) is a technique used successfully to preserve the visual quality of lettuce and some other commodities. The expansion of use of low O2 via MAP to preserve quality of most commodities is limited by technical difficulties achieving target O2 concentrations, adverse physiological responses to low O2, and lack of beneficial responses to low O2. Low O2 often is not used simply because the physiological responses governed by the gas are not limiting quality maintenance. For instance, shelf life may be governed by decay susceptibility, which is largely unaffected by low O2 and may actually be exacerbated by the conditions encountered in hermetically sealed packages. Physiological processes influenced by low O2 and limit storability are discussed. The interdependence of O2 concentration, O2 uptake by the product, and temperature are discussed relative to requirements for packaging films.


Sign in / Sign up

Export Citation Format

Share Document