Analysis of odour-active compounds of black mangrove (Avicennia germinans L.) honey by solid-phase microextraction combined with gas chromatography-mass spectrometry and gas chromatography-olfactometry

2012 ◽  
Vol 47 (8) ◽  
pp. 1688-1694 ◽  
Author(s):  
Jorge A. Pino
Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1385 ◽  
Author(s):  
Dong Han ◽  
Si Mi ◽  
Chun-Hui Zhang ◽  
Juan Li ◽  
Huan-Lu Song ◽  
...  

The primary aim of this study was to investigate volatile constituents for the differentiation of Chinese marinated pork hocks from four local brands, Dahongmen (DHM), Daoxiangcun (DXC), Henghuitong (HHT) and Tianfuhao (TFH). To this end the volatile constituents were evaluated by gas chromatography-mass spectrometry/olfactometry (GC-MS/O), electronic nose (E-nose) and chemometrics. A total of 62 volatile compounds were identified and quantified in all pork hocks, and 24 of them were considered as odour-active compounds because their odour activity values (OAVs) were greater than 1. Hexanal (OAV at 3.6–20.3), octanal (OAV at 30.3–47.5), nonanal (OAV at 68.6–166.3), 1,8-cineole (OAV at 36.4–133.3), anethole (OAV at 5.9–28.3) and 2-pentylfuran (OAV at 3.5–29.7) were the key odour-active compounds contributing to the integral flavour of the marinated pork hocks. According to principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) of GC-MS/O and E-nose data, the results showed that the marinated pork hocks were clearly separated into three groups: DHM, HHT, and DXC-TFH. Nine odour-active compounds, heptanal, nonanal, 3-carene, d-limonene, β-phellandrene, p-cymene, eugenol, 2-ethylfuran and 2-pentylfuran, were determined to represent potential flavour markers for the discrimination of marinated pork hocks. This study indicated the feasibility of using GC-MS/O coupled with the E-nose method for the differentiation of the volatile profile in different brands of marinated pork hocks.


Beverages ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 31
Author(s):  
Katherine Witrick ◽  
Eric R. Pitts ◽  
Sean F. O’Keefe

Lambic beer is produced using spontaneous fermentation. Gueuze is a style of lambic beer that blends “young” (1 year old) and “aged” (2+ years old) beers. Little is known about the development of volatile aroma compounds in lambic beer during aging. Solid-phase microextraction and gas chromatography–mass spectrometry were used to analyze volatile compounds from 3, 6, 9, 12, and 28-month-old commercial samples of lambic beer. Compounds were identified using standardized retention time and mass spectra of standards. Gas chromatography–olfactometry was used to characterize the aroma profiles of the samples. A total of 41 compounds were identified using gas chromatography–mass spectrometry (GC–MS). Ethyl lactate, ethyl acetate, 4-ethylphenol and 4-ethylguaiacol were identified in the 9, 12, and 28-month old samples. These four compounds have been linked to the microorganism Brettanomyces. Twenty-one aroma active compounds were identified using Gas chromatography–olfactometry (GC–O). As the age of the gueuze samples increased, a larger number of aroma compounds were identified by the panelists; the compounds identified increased from seven for the 3-month-old samples to nine for the 6-month-old samples, and eleven for both the nine and twelve-month-old samples, and seventeen for the twenty-eight-month-old samples.


Foods ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 29 ◽  
Author(s):  
Somchai Rice ◽  
Madina Tursumbayeva ◽  
Matthew Clark ◽  
David Greenlee ◽  
Murlidhar Dharmadhikari ◽  
...  

The Midwest wine industry has shown a marked increase in growers, hectares planted, wineries, and wine production. This growth coincides with the release of cold-hardy cultivars such as Brianna and Frontenac gris, in 2001 and 2003, respectively. These white grape varieties account for one-third of the total area grown in the state of Iowa. It is generally accepted that the wine aroma profile plays a crucial role in developing a local, sustainable brand. However, the identity of Brianna/Frontenac Gris-based wine aromas and their link to the grape berry chemistry at harvest is unknown. This study aims to preliminarily characterize key odor-active compounds that can influence the aroma profile in wines made from Brianna and Frontenac gris grapes harvested at different stages of ripening. Brianna and Frontenac gris grapes were harvested approximately 7 days apart, starting at 15.4 °Brix (3.09 pH) and 19.5 °Brix (3.00 pH), respectively. Small batch fermentations were made for each time point with all juices adjusted to the same °Brix prior to fermentation. Odor-active compounds were extracted from wine headspace using solid-phase microextraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS) and simultaneous olfactometry (O). Over 30 odor-active compounds were detected. Aromas in Brianna wines developed from “cotton candy” and “floral”, to “banana” and “butterscotch”, then finally to “honey”, “caramel” and an unknown neutral aroma. Frontenac gris wines changed from an unknown neutral aroma to “fruity” and “rose”. Results from the lay audiences’ flavor and aroma descriptors also indicate a shift with harvest date and associated °Brix. To date, this is the first report of wine aromas from Brianna and Frontenac gris by GC-MS-O. Findings from this research support the hypothesis that aroma profiles of Brianna and Frontenac gris wines can be influenced by harvesting the grapes at different stages of ripening.


Sign in / Sign up

Export Citation Format

Share Document