Interspecific variation in functional traits, not climatic differences among species ranges, determines demographic rates across 44 temperate and Mediterranean tree species

2010 ◽  
Vol 98 (6) ◽  
pp. 1462-1475 ◽  
Author(s):  
Jordi Martínez-Vilalta ◽  
Maurizio Mencuccini ◽  
Jordi Vayreda ◽  
Javier Retana
2014 ◽  
Vol 41 (3) ◽  
pp. 301 ◽  
Author(s):  
Johanna M. Toivonen ◽  
Viviana Horna ◽  
Michael Kessler ◽  
Kalle Ruokolainen ◽  
Dietrich Hertel

Plant functional traits can be genetically determined or phenotypically plastic. We assessed the degree of genetic determinism in the functional traits of Andean Polylepis tree species among 14 important traits that enable the species to withstand cold and dry conditions. We conducted a common garden experiment and related the species-specific means of the functional traits to the variables of climatic niche optima of the species (mean annual temperature and annual precipitation), deducing that if the interspecific variation in the functional trait is related to the species climatic niche optima according to the theoretically-expected pattern of climate-trait relationship, the variation of the trait must be genetically determined. In general, the traits were related either to species temperature or precipitation optima. For example, leaf size, maximum photosynthesis rate and root tip abundance were related to temperature, whereas light compensation and light saturation points were related to precipitation. Only leaf size showed a significant phylogenetic signal, indicating that most of the manifested climate–trait relationships are not caused purely by phylogeny, but are mainly a result of species specialisation along an environmental gradient. However, in many cases the relationships were rather weak. This suggests that important functional traits of Polylepis species involve both genetic and phenotypic components aiming to maximise the overall fitness of the species at high elevations.


2015 ◽  
Vol 42 (4) ◽  
pp. 423 ◽  
Author(s):  
Shi-Dan Zhu ◽  
Ya-Jun Chen ◽  
Kun-Fang Cao ◽  
Qing Ye

Plant functional traits are closely associated with plant habitats. In this study, we investigated the interspecific variations in stem and leaf hydraulics, xylem and leaf anatomy, gas-exchange rates and leaf pressure–volume relationships among three Syzygium tree species in early, mid- and late successional tropical forests. The objective was to understand the response and adaptation of congeneric species, in terms of branch and leaf functional traits, to different environments. A consistent pattern of decline with succession was evident in leaf and sapwood specific hydraulic conductivity (ks), maximum leaf hydraulic conductance (Kleaf), and photosynthetic rates for the three Syzygium species. Variations of ks and Kleaf were correlated with changes in vessel anatomy (i.e. vessel density and diameter) and leaf flux-related structure (i.e. stomatal pore index and vein density) respectively. However, specific leaf area and leaf to sapwood area ratio did not significantly differ among the three species. In addition, the mid-successional species had the lowest values of leaf water potential at full turgor and turgor loss point and 50% loss of Kleaf, but the greatest value of xylem water potential at 50% loss of ks. Our results demonstrate that leaf and branch traits associated with photosynthesis and/or hydraulic conductance, rather than those associated with drought tolerance, are the key factors underlying the response and adaptation of the three Syzygium tree species along the tropical forest succession.


2021 ◽  
Author(s):  
Andres Gonzalez-Melo ◽  
Juan Posada

<p>One foundational assumption of trait-based ecology is that functional traits can predict species demography. Yet, in general, the links between traits and demographic rates are not as strong as usually assumed. These weak associations may be due to two main reasons: the use of easy-to-measure traits as proxies of tree species performance, and the lack of consideration of size-related variations in both traits and demographic rates.</p><p>Here, we examined the associations between wood functional traits and mortality rates of 19 tree species from Eastern Amazonia. We measured eleven wood traits (i.e., structural, anatomical and chemical) in sapling, juvenile and adult wood, and related them to corresponding mortality rates.</p><p>Both sapling and juvenile mortality rates were best explained by wood specific gravity (WSG) and vessel lumen area (Va), while adult mortality was predicted only by Va. On the other hand, we found that the predictive power of wood trait on mortality rates decreased from saplings to adults.</p><p>These results indicate that the associations between traits and mortality rates can change during tree development, and also that hard-to-measure traits, such as wood chemical or anatomical traits, may be better predictors mortality rates than WSG. Our findings are important to expand our knowledge on tree life-history variations and community dynamics in tropical forests.</p><p> </p><p> </p>


2009 ◽  
Vol 18 (6) ◽  
pp. 662-673 ◽  
Author(s):  
Daniel Montoya ◽  
Drew W. Purves ◽  
Itziar R. Urbieta ◽  
Miguel A. Zavala

Author(s):  
Alexandre Changenet ◽  
Paloma Ruiz‐Benito ◽  
Sophia Ratcliffe ◽  
Thibaut Fréjaville ◽  
Juliette Archambeau ◽  
...  

2021 ◽  
Author(s):  
vivek pandi ◽  
Kanda Naveen Babu

Abstract The present study was carried out to analyse the leaf functional traits of co-occurring evergreen and deciduous tree species in a tropical dry scrub forest. This study also intended to check whether the species with contrasting leaf habits differ in their leaf trait plasticity, responding to the canopy-infestation by lianas. A total of 12 leaf functional traits were studied for eight tree species with contrasting leaf habits (evergreen and deciduous) and liana-colonization status (Liana+ and Liana−). In the liana-free environment (L−), evergreen trees had significantly higher specific leaf mass (LMA) and leaf dry matter content (LDMC) than the deciduous species. Whereas, the deciduous trees had higher specific leaf area (SLA) and mass-based leaf nitrogen concentration (Nmass). The leaf trait-pair relationship in the present study agreed to the well-established global trait-pair relationships (SLA Vs Nmass, Lth Vs SLA, Nmass Vs Lth, Nmass Vs LDMC, LDMC Vs SLA). There was no significant difference between L+ and L− individuals in any leaf functional traits studied in the deciduous species. However, evergreen species showed marked differences in the total chlorophyll content (Chlt), chlorophyll b (Chlb), SLA, and LMA between L+ and L− individuals of the same species. Deciduous species with the acquisitive strategy can have a competitive advantage over evergreen species in the exposed environment (L−) whereas, evergreen species with shade-tolerant properties were better acclimated to the shaded environments (L+). The result revealed the patterns of convergence and divergence in some of the leaf functional traits between evergreen and deciduous species. The results also showed the differential impact of liana colonization on the host trees with contrasting leaf habits. Therefore, liana colonization can significantly impact the C-fixation strategies of the host trees by altering their light environment. Further, the magnitude of such impact may vary among species of different leaf habits. The increased proliferation of lianas in the tropical forest canopies may pose a severe threat to the whole forest carbon assimilation rates.


Ecology ◽  
2015 ◽  
Author(s):  
Christine R. Rollinson ◽  
Margot W. Kaye ◽  
Charles D. Canham

2018 ◽  
Vol 33 (5) ◽  
pp. 326-336 ◽  
Author(s):  
Jie Yang ◽  
Min Cao ◽  
Nathan G. Swenson

2021 ◽  
Author(s):  
Carlos Aguilar-Trigueros ◽  
Mark Fricker ◽  
Matthias Rillig

<p>Fungal mycelia consist of an interconnected network of filamentous hyphae and represent the dominant phase of the lifecycle in all major fungal phyla, from basal to more recent clades. Indeed, the ecological success of fungi on land is partly due to such filamentous network growth. Nevertheless, fungal ecologists rarely use network features as functional traits. Given the widespread occurrence of this body type, we hypothesized that interspecific variation in network features may reflect both phylogenetic affiliation and distinct ecological strategies among species. We show first that there is high interspecific variation in network parameters of fungi, which partly correlates with taxonomy; and second that network parameters, related to predicted-mycelial transport mechanisms during the exploration phase, reveal the trait space in mycelium architecture across species.  This space predicts a continuum of ecological strategies along two extremes: from highly connected mycelia with high resilience to damage but limited transport efficiency, to poorly connected mycelia with low resilience but high transport efficiency. We argue that mycelial networks are potentially a rich source of information to inform functional trait analysis in fungi, but we also note the challenges in establishing common principles and processing pipelines that are required to facilitate widespread use of network properties as functional traits in fungal ecology.</p>


Sign in / Sign up

Export Citation Format

Share Document