scholarly journals Area-wide impact of macrocyclic lactone parasiticides in cattle dung

2011 ◽  
Vol 26 (1) ◽  
pp. 1-8 ◽  
Author(s):  
R. WALL ◽  
S. BEYNON
2019 ◽  
Vol 7 (1) ◽  
pp. 6-11
Author(s):  
Praveesh Bhati ◽  
Ritu Nagar ◽  
Anurag Titov

The decay of leaf litter by microflora and fauna furnish nutrient supply to the soil and also uphold ecological sustainability. Applying of proper technique and exploring of result provides information for the betterment of agricultural system. Vermicomposting of Sandalwood (Santalum album) leaf litters were studied with an emphasis of physio-chemical deviation during the process and also compared with 100 % cattle dung. Obtained result explore that temperate of 50 % leaf litter (LL) and 100 % cattle dung (CD) was slightly elevated (37ºC ±1 ºC and 35ºC ±1 ºC respectively) at beginning phase and later came down to ambient level (20ºC±1 ºC). The total organic carbon (TOC) exhausted 44 % in 50 % LL Vermicomposting mixture while 70 % in 100 % CD during the process. At the final stage, TOC found more in 50% LL as compared to 100% CD. Nitrogen content was found 1.02±0.1 in 50 % LL and 0.88±0.1 in 100 % CD at the initial phase but after completion of Vermicomposting, their level was increased up to 40 to 44 %.  pH was also measured during vermicomposting and found 7.2±0.1 in 50% LL while 8.4±0.1 in 100% CD at the initial phase. The at the end of process pH raised and set up to 8.2 ±0.1 in 50% LL while in 100% CD it was found 8.0 ±0.1.


Planta Medica ◽  
2019 ◽  
Vol 85 (09/10) ◽  
pp. 774-780 ◽  
Author(s):  
Waranya Lakornwong ◽  
Kwanjai Kanokmedhakul ◽  
Kasem Soytong ◽  
Arm Unartngam ◽  
Sarawut Tontapha ◽  
...  

AbstractChromatographic separation of extracts from the fungal biomass of a plant pathogenic fungus, Myrothecium roridum, yielded 8 trichothecene toxins including 6 type D trichothecenes (1–6) and 2 type A trichothecenes (7–8). 6′,12′-Epoxymyrotoxin A (1) and 7′-hydroxymytoxin B (2) were new macrocyclic trichothecenes, while the other trichothecenes were identified as myrotoxin B (3), myrotoxin D hydrate (4), 2′,3′-epoxymyrothecine A (5), miotoxin A (6), and 2 trichothecenes lacking the macrocyclic lactone system, roridin L-2 (7) and trichoverritone (8). The structures of these mycotoxins were characterized using spectroscopic methods. The absolute configurations of 1 and 2 were determined by NOESY and a comparison of their experimental and calculated ECD spectra. Most of these mycotoxins (1–4 and 6) exhibited highly potent antimalarial activity against Plasmodium falciparum. They also showed strong cytotoxicity towards KB and NCI-H187 cell lines (IC50 0.60 – 112.28 nM), as well as the Vero cell line (IC50 1.50 – 46.51 nM).


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 672
Author(s):  
Sandoval Carpinelli ◽  
Adriel Ferreira da Fonseca ◽  
Pedro Henrique Weirich Neto ◽  
Santos Henrique Brant Dias ◽  
Laíse da Silveira Pontes

Residue decomposition from cattle dung is crucial in the nutrient cycling process in Integrated Crop–Livestock Systems (ICLS). It also involves the impact of the presence of trees exerted on excreta distribution, as well as nutrient cycling. The objectives of this research included (i) mapping the distribution of cattle dung in two ICLS, i.e., with and without trees, CLT and CL, respectively, and (ii) quantification of dry matter decomposition and nutrient release (nitrogen—N, phosphorus—P, potassium—K, and sulphur—S) from cattle dung in both systems. The cattle dung excluded boxes were set out from July 2018 to October 2018 (pasture phase), and retrieved after 1, 7, 14, 21, 28, 56 and 84 days (during the grazing period). The initial concentrations of N (~19 g kg−1), P (~9 g kg−1), K (~16 g kg−1), and S (~8 g kg−1) in the cattle dung showed no differences. The total N, P, K and S released from the cattle dung residues were less in the CLT system (2.2 kg ha−1 of N; 0.7 kg ha−1 of P; 2.2 kg ha−1 of K and 0.6 kg ha−1 of S), compared to the CL (4.2 kg ha−1 of N; 1.4 kg ha−1 of P; 3.6 kg ha−1 of K and 1.1 kg ha−1 of S). Lesser quantities of cattle dung were observed in the CLT (1810) compared to the CL (2652), caused by the lower stocking rate, on average, in this system (721 in the CL vs. 393 kg ha−1 in the CLT) because of the reduced amount of pasture in the CLT systems (−41%), probably due to light reduction (−42%). The density of the excreta was determined using the Thiessen polygon area. The CL system revealed a higher concentration of faeces at locations near the water points, gate and fences. The CLT affects the spatial distribution of the dung, causing uniformity. Therefore, these results strengthen the need to understand the nutrient release patterns from cattle dung to progress fertilisation management.


1987 ◽  
Vol 28 (21) ◽  
pp. 2409-2412 ◽  
Author(s):  
P.P. Waanders ◽  
L. Thijs ◽  
B. Zwanenburg

ChemInform ◽  
2011 ◽  
Vol 43 (1) ◽  
pp. no-no
Author(s):  
Xiang-Jing Wang ◽  
Ji Zhang ◽  
Chong-Xi Liu ◽  
Dian-Liang Gong ◽  
Hui Zhang ◽  
...  
Keyword(s):  

2014 ◽  
Vol 7 ◽  
pp. 169-172 ◽  
Author(s):  
Xian-Qing Hu ◽  
Wei Han ◽  
Zhu-Zhen Han ◽  
Qing-Xin Liu ◽  
Xi-Ke Xu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document