Spatial genetic structure inMilicia excelsa(Moraceae) indicates extensive gene dispersal in a low-density wind-pollinated tropical tree

2009 ◽  
Vol 18 (21) ◽  
pp. 4398-4408 ◽  
Author(s):  
J.-P. BIZOUX ◽  
K. DAÏNOU ◽  
N. BOURLAND ◽  
O. J. HARDY ◽  
M. HEUERTZ ◽  
...  
PLoS ONE ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. e0193501
Author(s):  
James R. Smith ◽  
Jaboury Ghazoul ◽  
David F. R. P. Burslem ◽  
Akira Itoh ◽  
Eyen Khoo ◽  
...  

2020 ◽  
Vol 93 (5) ◽  
pp. 652-661 ◽  
Author(s):  
Georgina Sola ◽  
Verónica El Mujtar ◽  
Leonardo Gallo ◽  
Giovanni G Vendramin ◽  
Paula Marchelli

Abstract Understanding the impact of management on the dispersal potential of forest tree species is pivotal in the context of global change, given the implications of gene flow on species evolution. We aimed to determine the effect of logging on gene flow distances in two Nothofagus species from temperate Patagonian forests having high ecological relevance and wood quality. Therefore, a total of 778 individuals (mature trees and saplings) of Nothofagus alpina and N. obliqua, from a single plot managed 20 years ago (2.85 hectares), were mapped and genotyped at polymorphic nuclear microsatellite loci. Historical estimates of gene dispersal distance (based on fine-scale spatial genetic structure) and contemporary estimates of seed and pollen dispersal (based on spatially explicit mating models) were obtained. The results indicated restricted gene flow (gene distance ≤ 45 m, both pollen and seed), no selfing and significant seed and pollen immigration from trees located outside the studied plot but in the close surrounding area. The size of trees (diameter at breast height and height) was significantly associated with female and/or male fertility. The significant fine-scale spatial genetic structure was consistent with the restricted seed and pollen dispersal. Moreover, both estimates of gene dispersal (historical and contemporary) gave congruent results. This suggests that the recent history of logging within the study area has not significantly influenced on patterns of gene flow, which can be explained by the silviculture applied to the stand. The residual tree density maintained species composition, and the homogeneous spatial distribution of trees allowed the maintenance of gene dispersal. The short dispersal distance estimated for these two species has several implications both for understanding the evolution of the species and for defining management, conservation and restoration actions. Future replication of this study in other Nothofagus Patagonian forests would be helpful to validate our conclusions.


2016 ◽  
Vol 29 (12) ◽  
pp. 2519-2529 ◽  
Author(s):  
P.-J. G. Malé ◽  
C. Leroy ◽  
P. Humblot ◽  
A. Dejean ◽  
A. Quilichini ◽  
...  

Heredity ◽  
2001 ◽  
Vol 87 (4) ◽  
pp. 497-507 ◽  
Author(s):  
Bernd Degen ◽  
Henri Caron ◽  
Eric Bandou ◽  
Laurent Maggia ◽  
Marie Héléne Chevallier ◽  
...  

2016 ◽  
Vol 65 (2) ◽  
pp. 46-57 ◽  
Author(s):  
C. L. Chaves ◽  
A. M. Sebbenn ◽  
A. Baranoski ◽  
B. D. Goez ◽  
A. P.S.C. Gaino ◽  
...  

Abstract Facultative apomictic trees can produce offspring with a genotype identical to the mother due to asexual propagation through the embryo derived from cells in the maternal ovule tissues. These trees can also produce offspring with a genotype different from the mother due to genetic recombination. For many trees, these reproductive processes remain largely unexplored. Herein, we use microsatellite markers to identify apomictic and sexual reproduction in samples of adult and juvenile trees of the tropical, insect pollinated and wind seed dispersed Aspidosperma polyneuron, within a conservation area in Brazil. We also investigate seed and pollen flow and dispersal patterns and compare the genetic diversity, inbreeding, and intrapopulation spatial genetic structure (SGS) between adults and juveniles in two plots. Our results show that the species present both apomictic and sexual reproduction. Sexual reproduction occurred mainly by outcrossing, but we did detect instances of self-fertilization and mating among relatives, which explains the inbreeding observed in juveniles. Seed dispersal distance was shorter than pollen dispersal distance in one of the plots, suggesting that insect vectors are more efficient in gene dispersal than wind for seed dispersal in a high density tropical forest. The patterns of pollen and seed dispersal showed isolation by distance, explaining the SGS detected for adults and juveniles. Our results show that both seed and pollen flow increase the allelic diversity in the population. The regeneration of apomictic individuals may guarantee the continuation of genotypes adapted specifically to the study site, while sexual reproduction results in new genotypes.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Hyeon Jin Jeong ◽  
Jae Geun Kim

Abstract Background Asarum sieboldii Miq., a species of forest understory vegetation, is an herbaceous perennial belonging to the family Aristolochiaceae. The metapopulation of A. sieboldii is distributed sparsely and has a short seed dispersal distance by ants as their seed distributor. It is known that many flowers of A. sieboldii depend on self-fertilization. Because these characteristics can affect negatively in genetic structure, investigating habitat structure and assessment of genetic structure is needed. A total of 27 individuals in a valley were sampled for measuring genetic diversity, genetic distance, and genetic differentiation by RAPD-PCR. Results The habitat areas of A. sieboldii metapopulation were relatively small (3.78~33.60 m2) and population density was very low (five to seven individuals in 20×20 m quadrat). The habitat of A. sieboldii was a very shady (relative light intensity = 0.9%) and mature forest with a high evenness value (J = 0.81~0.99) and a low dominance value (D = 0.19~0.28). The total genetic diversity of A. sieboldii was quite high (h = 0.338, I = 0.506). A total of 33 band loci were observed in five selected primers, and 31 band loci (94%) were polymorphic. However, genetic differentiation along the valley was highly progressed (Gst = 0.548, Nm = 0.412). The average genetic distance between subpopulations was 0.387. The results of AMOVA showed 52.77% of variance occurs among populations, which is evidence of population structuring. Conclusions It is expected that a small-scale founder effect had occurred, an individual spread far from the original subpopulation formed a new subpopulation. However, geographical distance between individuals would have been far and genetic flow occurred only within each subpopulation because of the low density of population. This made significant genetic distance between the original and new population by distance. Although genetic diversity of A. sieboldii metapopulation is not as low as concerned, the subpopulation of A. sieboldii can disappear by stochastic events due to small subpopulation size and low density of population. To prevent genetic isolation and to enhance the stable population size, conservative efforts such as increasing the size of each subpopulation or the connection between subpopulations are needed.


Sign in / Sign up

Export Citation Format

Share Document