scholarly journals XMM-Newtonsurveys of the Canada-France Redshift Survey fields - II. The X-ray catalogues, the properties of the host galaxies and the redshift distribution

2004 ◽  
Vol 350 (3) ◽  
pp. 785-797 ◽  
Author(s):  
T. J. Waskett ◽  
S. A. Eales ◽  
W. K. Gear ◽  
H. J. McCracken ◽  
M. Brodwin ◽  
...  
2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


2019 ◽  
Vol 15 (S356) ◽  
pp. 295-298
Author(s):  
Betelehem Bilata-Woldeyes ◽  
Mirjana Pović ◽  
Zeleke Beyoro-Amado ◽  
Tilahun Getachew-Woreta ◽  
Shimeles Terefe

AbstractStudying the morphology of a large sample of active galaxies at different wavelengths and comparing it with active galactic nuclei (AGN) properties, such as black hole mass (MBH) and Eddington ratio (λEdd), can help us in understanding better the connection between AGN and their host galaxies and the role of nuclear activity in galaxy formation and evolution. By using the BAT-SWIFT hard X-ray public data and by extracting those parameters measured for AGN and by using other public catalogues for parameters such as stellar mass (M*), star formation rate (SFR), bolometric luminosity (Lbol), etc., we studied the multiwavelength morphological properties of host galaxies of ultra-hard X-ray detected AGN and their correlation with other AGN properties. We found that ultra hard X-ray detected AGN can be hosted by all morphological types, but in larger fractions (42%) they seem to be hosted by spirals in optical, to be quiet in radio, and to have compact morphologies in X-rays. When comparing morphologies with other galaxy properties, we found that ultra hard X-ray detected AGN follow previously obtained relations. On the SFR vs. stellar mass diagram, we found that although the majority of sources are located below the main sequence (MS) of star formation (SF), still non-negligible number of sources, with diverse morphologies, is located on and/or above the MS, suggesting that AGN feedback might have more complex influence on the SF in galaxies than simply quenching it, as it was suggested in some of previous studies.


2020 ◽  
Vol 498 (2) ◽  
pp. 2323-2338
Author(s):  
Thomas M Jackson ◽  
D J Rosario ◽  
D M Alexander ◽  
J Scholtz ◽  
Stuart McAlpine ◽  
...  

ABSTRACT In this paper, we present data from 72 low-redshift, hard X-ray selected active galactic nucleus (AGN) taken from the Swift–BAT 58 month catalogue. We utilize spectral energy distribution fitting to the optical to infrared photometry in order to estimate host galaxy properties. We compare this observational sample to a volume- and flux-matched sample of AGN from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) hydrodynamical simulations in order to verify how accurately the simulations can reproduce observed AGN host galaxy properties. After correcting for the known +0.2 dex offset in the SFRs between EAGLE and previous observations, we find agreement in the star formation rate (SFR) and X-ray luminosity distributions; however, we find that the stellar masses in EAGLE are 0.2–0.4 dex greater than the observational sample, which consequently leads to lower specific star formation rates (sSFRs). We compare these results to our previous study at high redshift, finding agreement in both the observations and simulations, whereby the widths of sSFR distributions are similar (∼0.4–0.6 dex) and the median of the SFR distributions lie below the star-forming main sequence by ∼0.3–0.5 dex across all samples. We also use EAGLE to select a sample of AGN host galaxies at high and low redshift and follow their characteristic evolution from z = 8 to z = 0. We find similar behaviour between these two samples, whereby star formation is quenched when the black hole goes through its phase of most rapid growth. Utilizing EAGLE we find that 23 per cent of AGN selected at z ∼ 0 are also AGN at high redshift, and that their host galaxies are among the most massive objects in the simulation. Overall, we find EAGLE reproduces the observations well, with some minor inconsistencies (∼0.2 dex in stellar masses and ∼0.4 dex in sSFRs).


2018 ◽  
Vol 14 (S346) ◽  
pp. 332-336
Author(s):  
M. Celeste Artale ◽  
Nicola Giacobbo ◽  
Michela Mapelli ◽  
Paolo Esposito

AbstractThe high mass X-ray binaries (HMXBs) provide an exciting framework to investigate the evolution of massive stars and the processes behind binary evolution. HMXBs have shown to be good tracers of recent star formation in galaxies and might be important feedback sources at early stages of the Universe. Furthermore, HMXBs are likely the progenitors of gravitational wave sources (BH–BH or BH–NS binaries that may merge producing gravitational waves). In this work, we investigate the nature and properties of HMXB population in star-forming galaxies. We combine the results from the population synthesis model MOBSE (Giacobbo & Mapelli 2018a) together with galaxy catalogs from EAGLE simulation (Schaye et al. 2015). Therefore, this method describes the HMXBs within their host galaxies in a self-consistent way. We compute the X-ray luminosity function (XLF) of HMXBs in star-forming galaxies, showing that this methodology matches the main features of the observed XLF.


2019 ◽  
Vol 15 (S350) ◽  
pp. 274-277
Author(s):  
Junjie Mao

AbstractPhotoionized outflows in active galactic nuclei (AGNs) are thought to influence their circumnuclear and host galactic environment. However, the distance of the outflow with respect to the black hole is poorly constrained, which limits our understanding of the kinetic power by the outflow. Therefore, the impact of AGN outflows on their host galaxies is uncertain. If the density of the outflow is known, its distance can be derived. Density measurement via variability studies and density sensitive lines have been used, albeit not very effective in the X-ray band. Good measurements are rather demanding or challenging for the current generation of (grating) spectrometers. The next generation of spectrometers will certainly provide data with better quality and large quantity, leading to tight constraints on the location and the kinetic power of AGN outflows. This contribution summarizes the state-of-the-art in this field.


Author(s):  
Zsolt Bagoly ◽  
István I. Rácz ◽  
Lajos G. Balázs ◽  
István Horváth ◽  
L. Viktor Tóth

AbstractWe studied the unbiased optical brightness distribution which was calculated from the survival analysis of host galaxies (HGs) data and its relationship with the Swift GRB data of the host galaxies observed by the Keck telescope. Based on the sample obtained from merging the Swift GRB table and the Keck optical data we also studied the dependence of this distribution on the GRB's data. Finally, we compared the HGs distribution with standard galaxies distribution of the DEEP2 redshift survey and checked the result with the VIPERS catalogue too.


Sign in / Sign up

Export Citation Format

Share Document