scholarly journals Accretion relics in the solar neighbourhood: debris from  Cen's parent galaxy

2005 ◽  
Vol 359 (1) ◽  
pp. 93-103 ◽  
Author(s):  
A. Meza ◽  
J. F. Navarro ◽  
M. G. Abadi ◽  
M. Steinmetz
1967 ◽  
Vol 31 ◽  
pp. 375-380
Author(s):  
H. C. van de Hulst

Various methods of observing the galactic magnetic field are reviewed, and their results summarized. There is fair agreement about the direction of the magnetic field in the solar neighbourhood:l= 50° to 80°; the strength of the field in the disk is of the order of 10-5gauss.


2020 ◽  
Vol 499 (4) ◽  
pp. 5623-5640
Author(s):  
Alice C Quillen ◽  
Alex R Pettitt ◽  
Sukanya Chakrabarti ◽  
Yifan Zhang ◽  
Jonathan Gagné ◽  
...  

ABSTRACT With backwards orbit integration, we estimate birth locations of young stellar associations and moving groups identified in the solar neighbourhood that are younger than 70 Myr. The birth locations of most of these stellar associations are at a smaller galactocentric radius than the Sun, implying that their stars moved radially outwards after birth. Exceptions to this rule are the Argus and Octans associations, which formed outside the Sun’s galactocentric radius. Variations in birth heights of the stellar associations suggest that they were born in a filamentary and corrugated disc of molecular clouds, similar to that inferred from the current filamentary molecular cloud distribution and dust extinction maps. Multiple spiral arm features with different but near corotation pattern speeds and at different heights could account for the stellar association birth sites. We find that the young stellar associations are located in between peaks in the radial/tangential (UV) stellar velocity distribution for stars in the solar neighbourhood. This would be expected if they were born in a spiral arm, which perturbs stellar orbits that cross it. In contrast, stellar associations seem to be located near peaks in the vertical phase-space distribution, suggesting that the gas in which stellar associations are born moves vertically together with the low-velocity dispersion disc stars.


2017 ◽  
Vol 12 (S330) ◽  
pp. 148-151 ◽  
Author(s):  
Edouard J. Bernard

AbstractWe took advantage of the Gaia DR1 to combine TGAS parallaxes with Tycho-2 and APASS photometry to calculate the star formation history (SFH) of the solar neighbourhood within 250 pc using the colour-magnitude diagram fitting technique. We present the determination of the completeness within this volume, and compare the resulting SFH with that calculated from the Hipparcos catalogue within 80 pc of the Sun. We also show how this technique will be applied out to ~5 kpc thanks to the next Gaia data releases, which will allow us to quantify the SFH of the thin disc, thick disc and halo in situ, rather than extrapolating based on the stars from these components that are today in the solar neighbourhood.


Author(s):  
T. Antoja ◽  
A. Helmi ◽  
O. Bienayme ◽  
J. Bland-Hawthorn ◽  
B. Famaey ◽  
...  
Keyword(s):  

1969 ◽  
Vol 143 (1) ◽  
pp. 27-35 ◽  
Author(s):  
V. R. Venugopal ◽  
W. L. H. Shuter
Keyword(s):  

2004 ◽  
Vol 350 (2) ◽  
pp. 627-643 ◽  
Author(s):  
Richard S. De Simone ◽  
Xiaoan Wu ◽  
Scott Tremaine

2020 ◽  
Vol 494 (2) ◽  
pp. 2429-2439 ◽  
Author(s):  
A S Binks ◽  
R D Jeffries ◽  
N J Wright

ABSTRACT In the last three decades several hundred nearby members of young stellar moving groups (MGs) have been identified, but there has been less systematic effort to quantify or characterize young stars that do not belong to previously identified MGs. Using a kinematically unbiased sample of 225 lithium-rich stars within 100 pc, we find that only 50 ± 10 per cent of young (≲125 Myr), low-mass (0.5 < M/M⊙ < 1.0) stars, are kinematically associated with known MGs. Whilst we find some evidence that five of the non-MG stars may be connected with the Lower Centaurus–Crux association, the rest form a kinematically ‘hotter’ population, much more broadly dispersed in velocity, and with no obvious concentrations in space. The mass distributions of the MG members and non-MG stars are similar, but the non-MG stars may be older on average. We briefly discuss several explanations for the origin of the non-MG population.


2017 ◽  
Vol 13 (S334) ◽  
pp. 304-305
Author(s):  
Jorrit H. J. Hagen ◽  
Amina Helmi

AbstractWe investigate the kinematics of red clump stars in the Solar neighbourhood by combining data from the RAVE survey with the TGAS dataset presented in Gaia DR1. Our goal is to put new constraints on the (local) distribution of mass using the Jeans Equations. Here we show the variation of the vertical velocity dispersion as function of height above the mid-plane for both a thin and a thick disk tracer sample and present preliminary results.


Sign in / Sign up

Export Citation Format

Share Document