orbit integration
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Sheridan B Green ◽  
Frank C van den Bosch ◽  
Fangzhou Jiang

Abstract Several recent studies have indicated that artificial subhalo disruption (the spontaneous, non-physical disintegration of a subhalo) remains prevalent in state-of-the-art dark matter-only cosmological simulations. In order to quantify the impact of disruption on the inferred subhalo demographics, we augment the semi-analytical SatGen dynamical subhalo evolution model with an improved treatment of tidal stripping that is calibrated using the DASH database of idealized high-resolution simulations of subhalo evolution, which are free from artificial disruption. We also develop a model of artificial disruption that reproduces the statistical properties of disruption in the Bolshoi simulation. Using this framework, we predict subhalo mass functions (SHMFs), number density profiles, and substructure mass fractions and study how these quantities are impacted by artificial disruption and mass resolution limits. We find that artificial disruption affects these quantities at the $10-20\%$ level, ameliorating previous concerns that it may suppress the SHMF by as much as a factor of two. We demonstrate that semi-analytical substructure modeling must include orbit integration in order to properly account for splashback haloes, which make up roughly half of the subhalo population. We show that the resolution limit of N-body simulations, rather than artificial disruption, is the primary cause of the radial bias in subhalo number density found in dark matter-only simulations. Hence, we conclude that the mass resolution remains the primary limitation of using such simulations to study subhaloes. Our model provides a fast, flexible, and accurate alternative to studying substructure statistics in the absence of both numerical resolution limits and artificial disruption.


2020 ◽  
Vol 499 (4) ◽  
pp. 5623-5640
Author(s):  
Alice C Quillen ◽  
Alex R Pettitt ◽  
Sukanya Chakrabarti ◽  
Yifan Zhang ◽  
Jonathan Gagné ◽  
...  

ABSTRACT With backwards orbit integration, we estimate birth locations of young stellar associations and moving groups identified in the solar neighbourhood that are younger than 70 Myr. The birth locations of most of these stellar associations are at a smaller galactocentric radius than the Sun, implying that their stars moved radially outwards after birth. Exceptions to this rule are the Argus and Octans associations, which formed outside the Sun’s galactocentric radius. Variations in birth heights of the stellar associations suggest that they were born in a filamentary and corrugated disc of molecular clouds, similar to that inferred from the current filamentary molecular cloud distribution and dust extinction maps. Multiple spiral arm features with different but near corotation pattern speeds and at different heights could account for the stellar association birth sites. We find that the young stellar associations are located in between peaks in the radial/tangential (UV) stellar velocity distribution for stars in the solar neighbourhood. This would be expected if they were born in a spiral arm, which perturbs stellar orbits that cross it. In contrast, stellar associations seem to be located near peaks in the vertical phase-space distribution, suggesting that the gas in which stellar associations are born moves vertically together with the low-velocity dispersion disc stars.


2020 ◽  
Vol 66 (3) ◽  
pp. 671-688
Author(s):  
Yufeng Nie ◽  
Yunzhong Shen ◽  
Qiujie Chen ◽  
Yun Xiao

2020 ◽  
Vol 639 ◽  
pp. A38 ◽  
Author(s):  
Y. Wang ◽  
E. Athanassoula ◽  
S. Mao

Aims. The orbital structure of galaxies is strongly influenced by the accuracy of the force calculation during orbit integration. We explore the accuracy of force calculations for two expansion methods and determine which one is preferable for orbit integration. Methods. We specifically compare two methods, one was introduced by Hernquist & Ostriker (HO), which uses a spherical coordinate system and was built specifically for the Hernquist model, and the other by Vasiliev & Athanassoula (CylSP) has a cylindrical coordinate system. Our comparisons include the Dehnen profile, its triaxial extension (of which the Hernquist profile is a special case) and a multicomponent system including a bar and disk density distributions for both analytical models and N-body realizations. Results. For the generalized Dehnen density, the CylSP method is more accurate than the HO method for nearly all inner power-law indices and shapes at all radii. For N-body realizations of the Dehnen model, or snapshots of an N-body simulation, the CylSP method is more accurate than the HO method in the central region for the oblate, prolate, and triaxial Hernquist profiles if the particle number is more than 5 × 105. For snapshots of the Hernquist models with spherical shape, the HO method is preferred. For the Ferrers bar model, the force from the CylSP method is more accurate than the HO method. The CPU time required for the initialization of the HO method is significantly shorter than that for the CylSP method, while the HO method costs subsequently much more CPU time than the CylSP method if the input corresponds to particle positions. From surface of section analyses, we find that the HO method creates more chaotic orbits than the CylSP method in the bar model. This could be understood to be due to a spurious peak in the central region when the force is calculated with the HO expansion. Conclusions. For an analytical model, the CylSP method with an inner cutoff radius of interpolation Rmin as calculated by the AGAMA software, is preferred due to its accuracy. For snapshots or N-body realizations not including a disk or a bar component, a detailed comparison between these two methods is needed if a density model other than the Dehnen model is used. For multicomponent systems, including a disk and a bar, the CylSP method is preferable.


2020 ◽  
Author(s):  
Yufeng Nie ◽  
Yunzhong Shen ◽  
Qiujie Chen

<p>In Next Generation Gravity Missions (NGGM) the Laser Ranging Interferometer (LRI) is applied to measure inter-satellite range rate with nanometer-level precision. Thereby the precision of numerical orbit integration must be higher or at least same as that of LRI and the currently widely-used double-precision orbit integration technique cannot meet the numerical requirements of LRI measurements. Considering quadruple-precision orbit integration arithmetic is time consuming, we propose a hybrid-precision numerical orbit integration technique, in which the double- and quadruple-precision arithmetic is employed in the increment calculation part and orbit propagation part, respectively. Since the round-off errors are not sensitive to the time-demanding increment calculation but to the least time-consuming orbit propagation, the proposed hybrid-precision numerical orbit integration technique is as efficient as the double-precision orbit integration technique, and as precise as the quadruple-precision orbit integration. By using hybrid-precision orbit integration technique, the range rate precision is easily achieved at 10-12m/s in either nominal or Encke form, and furthermore the sub-nanometer-level range precision is obtainable in the Encke form with reference orbit selected as the best-fit one. Therefore, the hybrid-precision orbit integration technique is suggested to be used in the gravity field solutions for NGGM.</p>


2020 ◽  
Vol 493 (4) ◽  
pp. 5636-5647
Author(s):  
Thor Tepper-García ◽  
Joss Bland-Hawthorn ◽  
Di Li

ABSTRACT We revisit the orbital history of the Triangulum galaxy (M33) around the Andromeda galaxy (M31) in view of the recent Gaia Data Release 2 proper motion measurements for both Local Group galaxies. Earlier studies consider highly idealized dynamical friction, but neglect the effects of dynamical mass loss. We show the latter process to be important using mutually consistent orbit integration and N-body simulations. Following this approach, we find an orbital solution that brings these galaxies to within ∼50 kpc of each other in the past, ∼6.5 Gyr ago. We explore the implications of their interaction using an N-body/hydrodynamical simulation with a focus on the origin of two prominent features: (1) M31’s Giant Stellar Stream; and (2) the M31–M33 H i filament. We find that the tidal interaction does not produce a structure reminiscent of the stellar stream that survives up to the present day. In contrast, the M31–M33 H i filament is likely a fossil structure dating back to the time of the ancient encounter between these galaxies. Similarly, the observed outer disc warp in M33 may well be a relic of this past event. Our model suggests the presence of a tidally induced gas envelope around these galaxies, and the existence of a diffuse gas stream, the ‘Triangulum stream’, stretching for tens of kpc from M33 away from M31. We anticipate upcoming observations with the recently commissioned, Five-hundred-metre Aperture Spherical radio Telescope that will target the putative stream in its first years of operation.


Author(s):  
F Fragkoudi ◽  
D Katz ◽  
W Trick ◽  
S D M White ◽  
P Di Matteo ◽  
...  

Abstract We explore the origin of phase-space substructures revealed by the second Gaia data release in the disc of the Milky Way, such as the ridges in the Vφ-r plane, the undulations in the Vφ-r-Vr space and the streams in the Vφ-Vr plane. We use a collisionless N-body simulation with co-spatial thin and thick discs, along with orbit integration, to study the orbital structure close to the Outer Lindblad Resonance (OLR) of the bar. We find that a prominent, long-lived ridge is formed in the Vφ-r plane due to the OLR which translates to streams in the Vφ-Vr plane and examine which closed periodic and trapped librating orbits are responsible for these features. We find that orbits which carry out small librations around the x1(1) family are preferentially found at negative Vr, giving rise to a ‘horn’-like feature, while orbits with larger libration amplitudes, trapped around the x1(2) and x1(1) families, constitute the positive Vr substructure, i.e. the Hercules-like feature. This changing libration amplitude of orbits will translate to a changing ratio of thin/thick disc stars, which could have implications on the metallicity distribution in this plane. We find that a scenario in which the Sun is placed close to the OLR gives rise to a strong asymmetry in Vr in the Vφ-Vr plane (i.e. Hercules vs. ‘the horn’) and subsequently to undulations in the Vφ-r-Vr space. We also explore a scenario in which the Sun is placed closer to the bar corotation and find that the bar perturbation alone cannot give rise to the these features.


2018 ◽  
Vol 490 (1) ◽  
pp. 157-171 ◽  
Author(s):  
T Marchetti ◽  
E M Rossi ◽  
A G A Brown

ABSTRACT We search for the fastest stars in the subset of stars with radial velocity measurements of the second data release (DR2) of the European Space Agency mission Gaia. Starting from the observed positions, parallaxes, proper motions, and radial velocities, we construct the distance and total velocity distribution of more than 7 million stars in our Milky Way, deriving the full 6D phase space information in Galactocentric coordinates. These information are shared in a catalogue, publicly available at http://home.strw.leidenuniv.nl/~marchetti/research.html. To search for unbound stars, we then focus on stars with a probability greater than $50 $ per cent of being unbound from the Milky Way. This cut results in a clean sample of 125 sources with reliable astrometric parameters and radial velocities. Of these, 20 stars have probabilities greater than 80 per cent of being unbound from the Galaxy. On this latter subsample, we perform orbit integration to characterize the stars’ orbital parameter distributions. As expected given the relatively small sample size of bright stars, we find no hypervelocity star candidates, stars that are moving on orbits consistent with coming from the Galactic Centre. Instead, we find seven hyperrunaway star candidates, coming from the Galactic disc. Surprisingly, the remaining 13 unbound stars cannot be traced back to the Galaxy, including two of the fastest stars (around 700 km s−1). If conformed, these may constitute the tip of the iceberg of a large extragalactic population or the extreme velocity tail of stellar streams.


Author(s):  
Prasenjit Saha ◽  
Paul A. Taylor

Celestial mechanics abounds in interesting and counter-intuitive phenomena, such as descriptions of mass transfer between stars or optimal placements of satellites within the Solar System. Remarkably, many such features are already present in the restricted three-body problem, whose assumptions still allow for analytical understanding, and to which the second chapter is devoted. This ‘simplified’ system is discussed first in terms of forces (both gravitational and fictitious), and then using the Hamiltonian form. As well as traditional topics like stable and unstable Lagrange points and Roche lobes, a brief introduction to chaotic orbits is given. Additionally, readers are guided towards exploring on their own with numerical orbit integration.


Sign in / Sign up

Export Citation Format

Share Document