scholarly journals NLS1 galaxies and estimation of their central black hole masses from the X-ray excess variance method

2009 ◽  
Vol 394 (4) ◽  
pp. 2141-2152 ◽  
Author(s):  
M. Nikołajuk ◽  
B. Czerny ◽  
P. Gurynowicz
1998 ◽  
Vol 500 (2) ◽  
pp. 642-659 ◽  
Author(s):  
Kiyoshi Hayashida ◽  
Sigenori Miyamoto ◽  
Shunji Kitamoto ◽  
Hitoshi Negoro ◽  
Hajime Inoue

2010 ◽  
Vol 19 (06) ◽  
pp. 909-915
Author(s):  
HONG-GUANG WANG ◽  
JUN-HUI FAN ◽  
YONG HUANG ◽  
JING PAN ◽  
JIANG-HE YANG

In this work, we revisited the relationship between the subclasses of blazars (X–ray selected BL Lacertae objects (XBLs), radio selected BL Lacertae objects (RBLs), and flat spectrum radio quasars (FSRQs)) based on a sample of blazars. We found that the FSRQs–RBLs–XBLs relationship is clear in their bolometric luminosity, emission line luminosity and the accretion ratio with V FSRQs > V RBLs > V XBLs , where V stands for the three parameters. However, there is no clear difference amongst their central black hole masses. The bolometric luminosity is closely correlated with the emission line luminosity and the accretion ratio.


Author(s):  
Miranda Yew ◽  
Miroslav D. Filipović ◽  
Quentin Roper ◽  
Jordan D. Collier ◽  
Evan J. Crawford ◽  
...  

AbstractWe present a multi-frequency study of the intermediate spiral SAB(r)bc type galaxy NGC 6744, using available data from the Chandra X-Ray telescope, radio continuum data from the Australia Telescope Compact Array and Murchison Widefield Array, and Wide-field Infrared Survey Explorer infrared observations. We identify 117 X-ray sources and 280 radio sources. Of these, we find nine sources in common between the X-ray and radio catalogues, one of which is a faint central black hole with a bolometric radio luminosity similar to the Milky Way’s central black hole. We classify 5 objects as supernova remnant (SNR) candidates, 2 objects as likely SNRs, 17 as H ii regions, 1 source as an AGN; the remaining 255 radio sources are categorised as background objects and one X-ray source is classified as a foreground star. We find the star-formation rate (SFR) of NGC 6744 to be in the range 2.8–4.7 M⊙~yr − 1 signifying the galaxy is still actively forming stars. The specific SFR of NGC 6744 is greater than that of late-type spirals such as the Milky Way, but considerably less that that of a typical starburst galaxy.


2019 ◽  
Vol 493 (1) ◽  
pp. 1500-1511 ◽  
Author(s):  
Francesco Shankar ◽  
David H Weinberg ◽  
Christopher Marsden ◽  
Philip J Grylls ◽  
Mariangela Bernardi ◽  
...  

ABSTRACT The masses of supermassive black holes at the centres of local galaxies appear to be tightly correlated with the mass and velocity dispersions of their galactic hosts. However, the local Mbh–Mstar relation inferred from dynamically measured inactive black holes is up to an order-of-magnitude higher than some estimates from active black holes, and recent work suggests that this discrepancy arises from selection bias on the sample of dynamical black hole mass measurements. In this work, we combine X-ray measurements of the mean black hole accretion luminosity as a function of stellar mass and redshift with empirical models of galaxy stellar mass growth, integrating over time to predict the evolving Mbh–Mstar relation. The implied relation is nearly independent of redshift, indicating that stellar and black hole masses grow, on average, at similar rates. Matching the de-biased local Mbh–Mstar relation requires a mean radiative efficiency ε ≳ 0.15, in line with theoretical expectations for accretion on to spinning black holes. However, matching the ‘raw’ observed relation for inactive black holes requires ε ∼ 0.02, far below theoretical expectations. This result provides independent evidence for selection bias in dynamically estimated black hole masses, a conclusion that is robust to uncertainties in bolometric corrections, obscured active black hole fractions, and kinetic accretion efficiency. For our fiducial assumptions, they favour moderate-to-rapid spins of typical supermassive black holes, to achieve ε ∼ 0.12–0.20. Our approach has similarities to the classic Soltan analysis, but by using galaxy-based data instead of integrated quantities we are able to focus on regimes where observational uncertainties are minimized.


1997 ◽  
Vol 159 ◽  
pp. 40-43 ◽  
Author(s):  
K. Hayashida

AbstractASCA observations of four narrow-line Seyfert 1 galaxies are presented. Among the four sources, two show X-ray spectra consisting of soft and hard components. Rapid X-ray variability is observed in all four sources. We estimate the central black-hole mass of these sources and find indications that the apparent luminosities exceed the Eddington limit under some assumptions.


1998 ◽  
Vol 188 ◽  
pp. 291-292
Author(s):  
T. Toneri ◽  
K. Hayashida ◽  
M. Loewenstein

M32 is the nearest dwarf elliptical galaxy. Its center is known to have a mass concentration of 3 × 106 M⊙, which is usually interpreted as an evidence of a super massive black hole. We observed M32 with ASCA two times in July and August of 1996. An X-ray source was detected at the center of M32 and its first broad-band X-ray spectra were obtained. ASCA observations of M32 limit the activity of the central black hole to be less than 10−6 times of the Eddington limit. We also found two other bright sources within 12 arcmin from the M32 center. One is the newly appeared X-ray source and the other is G144. In this paper, we summarize the results on the new source and G144. For M32, please refer to the publication (Loewenstein et al. 1997).


2007 ◽  
Vol 667 (1) ◽  
pp. 97-116 ◽  
Author(s):  
L. Ballo ◽  
S. Cristiani ◽  
G. Fasano ◽  
F. Fontanot ◽  
P. Monaco ◽  
...  

1994 ◽  
Vol 159 ◽  
pp. 380-380
Author(s):  
G. Matt ◽  
A.C. Fabian ◽  
R.R. Ross

The presence of iron lines and high energy excesses in the X-ray spectra of Seyfert galaxies has been firmly established by Ginga (e.g. Nandra & Pounds 1993 and references therein). These features are generally interpreted as signatures of the reprocessing of the primary X-rays by matter in the neighbourhood of the central black hole, probably distributed in an accretion disc (Lightman & White 1988, George & Fabian 1991, Matt, Perola & Piro 1991).


1979 ◽  
Vol 84 ◽  
pp. 401-404
Author(s):  
B. Paczyński ◽  
V. Trimble

There is a reasonable chance of finding a (probably X-ray) pulsar in a short-period orbit around the galactic center. Such a pulsar can provide a test distinguishing a central black hole from a supermassive object or spinar. It also makes available a good clock in a region of space in which GM/Rc2 is much larger than solar system values, thus allowing strong-field tests of general relativity.


Sign in / Sign up

Export Citation Format

Share Document