Egg dumping by predatory insects

2011 ◽  
Vol 36 (3) ◽  
pp. 290-293 ◽  
Author(s):  
AURELIE FERRER ◽  
AUDE C. CORBANI ◽  
ANTHONY F. G. DIXON ◽  
JEAN-LOUIS HEMPTINNE
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 559
Author(s):  
Lakshminath Kundanati ◽  
Prashant Das ◽  
Nicola M. Pugno

Aquatic predatory insects, like the nymphs of a dragonfly, use rapid movements to catch their prey and it presents challenges in terms of movements due to drag forces. Dragonfly nymphs are known to be voracious predators with structures and movements that are yet to be fully understood. Thus, we examine two main mouthparts of the dragonfly nymph (Libellulidae: Insecta: Odonata) that are used in prey capturing and cutting the prey. To observe and analyze the preying mechanism under water, we used high-speed photography and, electron microscopy. The morphological details suggest that the prey-capturing labium is a complex grasping mechanism with additional sensory organs that serve some functionality. The time taken for the protraction and retraction of labium during prey capture was estimated to be 187 ± 54 ms, suggesting that these nymphs have a rapid prey mechanism. The Young’s modulus and hardness of the mandibles were estimated to be 9.1 ± 1.9 GPa and 0.85 ± 0.13 GPa, respectively. Such mechanical properties of the mandibles make them hard tools that can cut into the exoskeleton of the prey and also resistant to wear. Thus, studying such mechanisms with their sensory capabilities provides a unique opportunity to design and develop bioinspired underwater deployable mechanisms.


2013 ◽  
Vol 67 (4) ◽  
pp. 621-627 ◽  
Author(s):  
Steph O’Connor ◽  
Kirsty J. Park ◽  
Dave Goulson

2000 ◽  
Vol 203 (14) ◽  
pp. 2117-2123 ◽  
Author(s):  
K. Kral ◽  
M. Vernik ◽  
D. Devetak

Mantispids (Mantispa styriaca) are predatory insects; on bright sunny days, they wait in ambush for insect prey. The prey is captured as soon as it is within reach by means of lightning-speed strikes with the powerful forelegs. The strikes can take less than 60 ms. The mantispid accomplishes this almost as effectively as the larger praying mantis, which occupies a similar habitat, even though the praying mantis has apposition eyes with a high-resolution fovea, whereas the mantispid has unspecialized optical superposition eyes. Mantispa styriaca reacts to an item of prey when the latter covers a critical visual angle. The detection of prey immediately triggers adjustment reactions in the mantispid, which attempts to position the prey item in the visual field of both eyes and in the capture zone. Irrespective of the size of the prey, the capture reaction of the mantispid is always triggered if the distance to the prey falls below a certain critical value. As indicated by the analysis of individual video frames, immediately before an aimed strike, the item of prey is always positioned exactly in the centre of the binocular field of vision in the extended midsagittal plane of the mantispid's head. The strike may be triggered by the ommatidia of the left and right eyes, the lines of sight of which converge precisely on this region. The principal conclusion to be drawn is that the prey-capture behaviour of the mantispid appears to be based on a triangulation mechanism.


2020 ◽  
Vol 13 ◽  
pp. 110-114
Author(s):  
Andrei Chiriloaie-Palade ◽  
Mădălina Radulea ◽  
Gheorghe Lămureanu ◽  
Ștefan Ion Mocanu ◽  
Maria Iamandei

"The cosmopolitan aphid species Myzus persicae is a key pest of peach orchards in south and southeastern Romania. The phenomenon of resistance induced by the intensive use of insecticides is a matter of concern for farmers and protectionists, making necessary integrated measure for the control of this pest. Conservation of natural enemy’s populations is an essential component of any management system proposed for pest aphids. The aim of the study was to determine the structure of predatory insects associated with Myzus persicae populations in peach orchards. The research was carried out in three orchards from two localities from Constanta County, in peach plantations with Springcrest variety aged 7, 11 and 12 years. As a result of this study, there were determined a total of 15 predatory insect species belonging to eight systematic families: Coccinellidae, Chrysopidae, Hemerobiidae, Syrphydae, Cecidomyiidae, Panorpidae, Nabidae and Forficulidae, which naturally contribute to the reduction of the green peach aphid populations. "


Author(s):  
Brígida Souza ◽  
Terezinha Monteiro dos Santos-Cividanes ◽  
Francisco Jorge Cividanes ◽  
Ana Luiza Viana de Sousa
Keyword(s):  

Insects ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 26
Author(s):  
Lei Nie ◽  
Fei Zhao ◽  
Yiming Chen ◽  
Qian Xiao ◽  
Zhiping Pan ◽  
...  

The paralysis behavior of some ponerine ants when foraging may be important for food storage and colony development. However, how workers invest in paralysis under different prey circumstances is often overlooked. Here, we report the prey-foraging behavior and paralysis behavior of Harpegnathos venator under different food supply conditions. Solitary hunting was the main foraging mode of H. venator, with occasional simple collective hunting. Nymphal cockroaches with high activity were the most attractive to H. venator. In the experiment, we found that the stings of H. venator completely paralyzed the cockroaches. The stinging time was significantly longer at a higher prey activity level and for larger cockroaches. In addition, there was no significant difference in the stinging time of H. venator for different prey densities. The results showed that the longer similar cockroaches were stung, the longer it took for them to revive and move. These results are helpful for further understanding the behavioral mechanism underlying the food storage of live prey by predatory insects.


2020 ◽  
Vol 21 (8) ◽  
Author(s):  
Siti Herlinda ◽  
Ghanni Prabawati ◽  
Yulia Pujiastuti ◽  
Susilawati Susilawati ◽  
Tili Karenina ◽  
...  

Abstract. Herlinda S, Prabawati G, Pujiastuti Y, Susilawati, Karenia T, Hasbi, Irsan C. 2020. Herbivore insects and predatory arthropods in freshwater swamp rice field in South Sumatra, Indonesia sprayed with bioinsecticides of entomopathogenic fungi and abamectin. Biodiversitas 21: 3755-3768. Herbivore insect population and predatory arthropods in rice field may be effected by the application entomopathogenic fungi or synthetic insecticide. The objective of this research was to analyze individual quantity of herbivore insects and predatory arthropod inhabiting freshwater swamp rice fields treated with bioinsecticides and abamectin (commercial insecticide). This research was conducted in the freshwater swamp rice field located in Village Pelabuhan Dalam, Sub District Pemulutan, District Ogan Ilir, and South Sumatra. The experiment was arranged in a Completely Randomized Block Design consisted of four plots of treatment. The research used the bioinsecticides made from entomopathogenic fungi (Beauveria bassiana, Metarhizium anisopliae, and Cordyceps military), and abamectin. Sampling to collect arthropods inhabiting rice canopy was also conducted using an entomological net in the study locations. This research found 12 families of herbivore insects with 22 species dominated by Nilaparvata lugens and Leptocorisa acuta and 32 species of spider belonged to eight families dominated by Tetragnatha virescens and Oxyopes matiensis. The species diversity of spider was higher in the plots of the bioinsecticide compared to that of the abamectin. Predatory insects found belonged to 14 species belonged to eight families dominated by species of Ophionea nigrofasciata, Verania discolor, and Paedorus fuscipe. The abundance of predatory insects in plots sprayed with the bioinsecticides was higher compared to that of the abamectin plot. The abundance and species diversity of predatory arthropod sprayed with bioinsecticide of B. bassiana, M. anisopliae, and C. militaris did not decrease, while the population of herbivore insect tended to decrease.


Sign in / Sign up

Export Citation Format

Share Document