scholarly journals Prey Capturing Dynamics and Nanomechanically Graded Cutting Apparatus of Dragonfly Nymph

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 559
Author(s):  
Lakshminath Kundanati ◽  
Prashant Das ◽  
Nicola M. Pugno

Aquatic predatory insects, like the nymphs of a dragonfly, use rapid movements to catch their prey and it presents challenges in terms of movements due to drag forces. Dragonfly nymphs are known to be voracious predators with structures and movements that are yet to be fully understood. Thus, we examine two main mouthparts of the dragonfly nymph (Libellulidae: Insecta: Odonata) that are used in prey capturing and cutting the prey. To observe and analyze the preying mechanism under water, we used high-speed photography and, electron microscopy. The morphological details suggest that the prey-capturing labium is a complex grasping mechanism with additional sensory organs that serve some functionality. The time taken for the protraction and retraction of labium during prey capture was estimated to be 187 ± 54 ms, suggesting that these nymphs have a rapid prey mechanism. The Young’s modulus and hardness of the mandibles were estimated to be 9.1 ± 1.9 GPa and 0.85 ± 0.13 GPa, respectively. Such mechanical properties of the mandibles make them hard tools that can cut into the exoskeleton of the prey and also resistant to wear. Thus, studying such mechanisms with their sensory capabilities provides a unique opportunity to design and develop bioinspired underwater deployable mechanisms.

2019 ◽  
Author(s):  
Lakshminath Kundanati ◽  
Prashant Das ◽  
Nicola M. Pugno

AbstractAquatic predatory insects, like the nymphs of a dragonfly, use rapid movements to catch their prey. Dragonfly nymphs are voracious predators that feed on smaller aquatic organisms. In this study, we examine dragonfly nymph (Libellulidae: Insecta: Odonata) mouthparts that are used in prey capturing and feeding. In particular, we characterise the morphology of the labium and mechanical properties of the mandibles of the nymph. Additionally, we record and analyse the preying mechanism using high-speed photography. The morphological details suggest that the prey capturing mechanism is a complex grasping mechanism with additional sensory organs that might aid in sensing the surroundings. The times taken for the extension and retraction of labial organ during prey capture was 187±54 ms. The Young’s modulus and hardness of the mandibles samples were 9.1±1.9 GPa and 0.85±0.13 GPa. Gradation in the mechanical properties was also observed in the mandible tip regions with increased properties at the tip end. The overall mechanism with its sensory capabilities provides a unique design to develop bioinspired underwater deployable mechanisms.


Author(s):  
E. V. Petrov ◽  
V. S. Trofimov ◽  
V. O. Kopytskiy

The surface layer of an obstacle made of U8 steel is investigated after high-speed exposure to a flow of powder particles. After analyzing the frames of high-speed photography, the average velocities of movement of particles of tungsten and titanium carbide powders were determined. It is shown that the shock-wave loading of the barrier material and the effect of particles accelerated by the explosion energy provide a change in the physical and mechanical properties of the surface and the volume of the steel barrier material.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 842 ◽  
Author(s):  
Yuansheng Zheng ◽  
Na Meng ◽  
Binjie Xin

In this study we investigated the effects of jet path on the morphology and mat size of synthetic polystyrene (PS) fibers during the electrospinning process. In addition, the mechanism of the fiber mats, which were prepared by varying the solution concentration, was evaluated. The straight jet length, envelope cone and whipping frequency of each electrospun jet were studied using images captured by a high-speed photography camera. The results showed that higher solution concentrations led to longer straight jet lengths, smaller envelope cones and lower whipping frequencies. The diameter and surface morphology of the PS fibers were also characterized by scanning electron microscopy (SEM). It was found that fibers spun with higher solution concentrations exhibited larger diameters and diameter distributions because of their jet path features. Furthermore, the electrospun jets with higher concentrations increased elongation and produced smaller fiber mats and higher breaking forces as a result of their different jet paths, which was a consequence of varying the solution concentration.


2020 ◽  
Vol 223 (21) ◽  
pp. jeb232868
Author(s):  
Daniel Schwarz ◽  
Stanislav N. Gorb ◽  
Alexander Kovalev ◽  
Nicolai Konow ◽  
Egon Heiss

ABSTRACTIntraoral food processing mechanisms are known for all major vertebrate groups, but the form and function of systems used to crush, grind or puncture food items can differ substantially between and within groups. Most vertebrates display flexible mechanisms of intraoral food processing with respect to different environmental conditions or food types. It has recently been shown that newts use cyclical loop-motions of the tongue to rasp prey against the palatal dentition. However, it remains unknown whether newts can adjust their food processing behavior in response to different food types or environmental conditions. Newts are interesting models for studying the functional adaptation to different conditions because of their unique and flexible lifestyle: they seasonally change between aquatic and terrestrial habitats, adapt their prey-capture mode to the respective environment, and consume diverse food types with different mechanical properties. Using X-ray high-speed recordings, anatomical investigations, behavioral analyses and mechanical property measurements, we tested the effects of the medium in which feeding occurs (water/air) and the food type (maggot, earthworm, cricket) on the processing behavior in Triturus carnifex. We discovered that food processing, by contrast to prey capture, differed only slightly between aquatic and terrestrial habitats. However, newts adjusted the number of processing cycles to different prey types: while maggots were processed extensively, earthworm pieces were barely processed at all. We conclude that, in addition to food mechanical properties, sensory feedback such as smell and taste appear to induce flexible processing responses, while the medium in which feeding occurs appears to have less of an effect.


2019 ◽  
Vol 395 ◽  
pp. 85-94
Author(s):  
Jan Šerák ◽  
Vojtěch Pečinka ◽  
Dalibor Vojtěch

In this work, the microstructure and mechanical properties of four types of high-speed tool steels (Vanadis 30, Vanadis 60, ASP 2052 and S 705) were studied. The steel S 705 was made by conventional ingot metallurgy technology, and other types of steels were manufactured by powder metallurgy technology. All studied steels were examined both in the soft state and further in the hardened condition with subsequent tempering. Microstructure of metallographic samples and fracture areas was studied by electron microscopy. Hardness, tensile properties and notch toughness were determined. Significant differences in the properties of steels in both studied states were documented.


In recent years, polyethylene (PE) has found increasing use in applications involving impact and erosion. This paper describes a detailed study of the properties of PE subjected to solid particle impact. Flat discs of the material were eroded by sieved sand (300-600 pm) accelerated by using an air blast rig in which the important variables of velocity, angle and mass flux rate are accurately controllable and measurable. Scanning electron microscopy of lightly eroded specimens enabled four basic crater types to be identified: smooth, ploughed, cut, and dented. The proportions of each were established over a range of angles. Long time erosion experiments were conducted in which the flux rate for each angle was adjusted to keep the number of impacts per unit time constant. The dimensionless erosion parameter, e (mass lost per unit mass of erodent that has struck) was computed by using the rate of mass loss when steady-state erosion had been established. Most erosion was found to occur at an angle of 20—30°, the mass loss becoming zero at around 80°. An analysis by D. R. Andrews is presented, showing that the flux rates used in these experiments are well below those needed to cause wear by thermal mechanisms, and this was confirmed by changing the flux rate: mass loss increased in proportion. Macroscopic particles were used to model sand grain impacts, spheres for rounded particles and square plates for sharp ones. A range of techniques was used in this study including high-speed photography (framing speed of 5 x 10 4 s -1 ), scanning electron microscopy, and moire methods (both in-plane and out-of-plane). A deformation map was constructed for steel sphere im pacts giving the type of crater to be expected at a given angle and speed. It was observed that sand grains required much lower speeds at a given angle to produce a given crater type. High-speed photography enabled mass-loss mechanisms for single-particle impact to be identified. These were the drawing-out of filaments and the machining-out of chips. Quantitative data on kinetic energy losses were obtained, and these, combined with moire methods that gave the sizes of deformed zones, enabled an estimate of the temperature rise per impact to be made (25 K).


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


Author(s):  
J. E. Johnson

In the early years of biological electron microscopy, scientists had their hands full attempting to describe the cellular microcosm that was suddenly before them on the fluorescent screen. Mitochondria, Golgi, endoplasmic reticulum, and other myriad organelles were being examined, micrographed, and documented in the literature. A major problem of that early period was the development of methods to cut sections thin enough to study under the electron beam. A microtome designed in 1943 moved the specimen toward a rotary “Cyclone” knife revolving at 12,500 RPM, or 1000 times as fast as an ordinary microtome. It was claimed that no embedding medium was necessary or that soft embedding media could be used. Collecting the sections thus cut sounded a little precarious: “The 0.1 micron sections cut with the high speed knife fly out at a tangent and are dispersed in the air. They may be collected... on... screens held near the knife“.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

One of the major advancements applied to scanning electron microscopy (SEM) during the past 10 years has been the development and application of digital imaging technology. Advancements in technology, notably the availability of less expensive, high-density memory chips and the development of high speed analog-to-digital converters, mass storage and high performance central processing units have fostered this revolution. Today, most modern SEM instruments have digital electronics as a standard feature. These instruments, generally have 8 bit or 256 gray levels with, at least, 512 × 512 pixel density operating at TV rate. In addition, current slow-scan commercial frame-grabber cards, directly applicable to the SEM, can have upwards of 12-14 bit lateral resolution permitting image acquisition at 4096 × 4096 resolution or greater. The two major categories of SEM systems to which digital technology have been applied are:In the analog SEM system the scan generator is normally operated in an analog manner and the image is displayed in an analog or "slow scan" mode.


Sign in / Sign up

Export Citation Format

Share Document