Responses of net ecosystem CO2 exchange in managed grassland to long-term CO2 enrichment, N fertilization and plant species

2005 ◽  
Vol 28 (7) ◽  
pp. 823-833 ◽  
Author(s):  
URS AESCHLIMANN ◽  
JOSEF NOSBERGER ◽  
PETER J. EDWARDS ◽  
MANUEL K. SCHNEIDER ◽  
MICHAEL RICHTER ◽  
...  
Agronomy ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 300 ◽  
Author(s):  
Pradeep Wagle ◽  
Prasanna Gowda

Adoption of better management practices is crucial to lessen the impact of anthropogenic disturbances on tallgrass prairie systems that contribute heavily for livestock production in several states of the United States. This article reviews the impacts of different common management practices and disturbances (e.g., fertilization, grazing, burning) and tallgrass prairie restoration on plant growth and development, plant species composition, water and nutrient cycles, and microbial activities in tallgrass prairie. Although nitrogen (N) fertilization increases aboveground productivity of prairie systems, several factors greatly influence the range of stimulation across sites. For example, response to N fertilization was more evident on frequently or annually burnt sites (N limiting) than infrequently burnt and unburnt sites (light limiting). Frequent burning increased density of C4 grasses and decreased plant species richness and diversity, while plant diversity was maximized under infrequent burning and grazing. Grazing increased diversity and richness of native plant species by reducing aboveground biomass of dominant grasses and increasing light availability for other species. Restored prairies showed lower levels of species richness and soil quality compared to native remnants. Infrequent burning, regular grazing, and additional inputs can promote species richness and soil quality in restored prairies. However, this literature review indicated that all prairie systems might not show similar responses to treatments as the response might be influenced by another treatment, timing of treatments, and duration of treatments (i.e., short-term vs. long-term). Thus, it is necessary to examine the long-term responses of tallgrass prairie systems to main and interacting effects of combination of management practices under diverse plant community and climatic conditions for a holistic assessment.


2019 ◽  
Vol 39 (2) ◽  
pp. 169 ◽  
Author(s):  
Holly L. Bernardo ◽  
Pati Vitt ◽  
Rachel Goad ◽  
Susanne Masi ◽  
Tiffany M. Knight

2013 ◽  
Vol 37 (6) ◽  
pp. 503-516 ◽  
Author(s):  
Li-Qiong YANG ◽  
Guang-Xuan HAN ◽  
Jun-Bao YU ◽  
Li-Xin WU ◽  
Min ZHU ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1540
Author(s):  
Bence Fülöp ◽  
Bálint Pacsai ◽  
Judit Bódis

Semi-natural grasslands were previously established through traditional land use and maintained by active management, but their extension nowadays is declining rapidly, particularly in areas that also have tourism potential. In parallel, the conservation value of the remaining areas is increasing. The shore of Lake Balaton is a particularly good example, as Lake Balaton is an area highly affected by tourism, yet there have been valuable habitats able to survive and provide refuge for many vulnerable, protected species. Fortunately, we have reliable information about the vegetation of the area from two decades ago. Comparing these data with our recent surveys we investigated the changes in habitats and the distribution of protected plant species in connection with the active conservation treatments such as grazing or cutting. Our results show that in areas where treatments are still ongoing, protected plant species are more likely to survive, or even other species can appear, which is in clear contrast with conditions experienced in abandoned areas, where at least seven protected species have disappeared. According to our results, minor, but appropriately chosen and well-executed management interventions, can help in the long-term maintenance of species-rich habitats and improving the conservation status of threatened species.


2006 ◽  
Vol 122 (4) ◽  
pp. 635-642 ◽  
Author(s):  
S. WOODIN ◽  
B. GRAHAM ◽  
A. KILLICK ◽  
U. SKIBA ◽  
M. CRESSER

2021 ◽  
Author(s):  
Yuyan Cui ◽  
Li Zhang ◽  
Andrew R Jacobson ◽  
Matthew S Johnson ◽  
Sajeev Philip ◽  
...  

2015 ◽  
Vol 12 (1) ◽  
pp. 79-101 ◽  
Author(s):  
Y. Wu ◽  
C. Blodau ◽  
T. R. Moore ◽  
J. Bubier ◽  
S. Juutinen ◽  
...  

Abstract. Nitrogen (N) pollution of peatlands alters their carbon (C) balances, yet long-term effects and controls are poorly understood. We applied the model PEATBOG to explore impacts of long-term nitrogen (N) fertilization on C cycling in an ombrotrophic bog. Simulations of summer gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem exchange (NEE) were evaluated against 8 years of observations and extrapolated for 80 years to identify potential effects of N fertilization and factors influencing model behaviour. The model successfully simulated moss decline and raised GEP, ER and NEE on fertilized plots. GEP was systematically overestimated in the model compared to the field data due to factors that can be related to differences in vegetation distribution (e.g. shrubs vs. graminoid vegetation) and to high tolerance of vascular plants to N deposition in the model. Model performance regarding the 8-year response of GEP and NEE to N input was improved by introducing an N content threshold shifting the response of photosynthetic capacity (GEPmax) to N content in shrubs and graminoids from positive to negative at high N contents. Such changes also eliminated the competitive advantages of vascular species and led to resilience of mosses in the long-term. Regardless of the large changes of C fluxes over the short-term, the simulated GEP, ER and NEE after 80 years depended on whether a graminoid- or shrub-dominated system evolved. When the peatland remained shrub–Sphagnum-dominated, it shifted to a C source after only 10 years of fertilization at 6.4 g N m−2 yr−1, whereas this was not the case when it became graminoid-dominated. The modelling results thus highlight the importance of ecosystem adaptation and reaction of plant functional types to N deposition, when predicting the future C balance of N-polluted cool temperate bogs.


2013 ◽  
Vol 37 (2) ◽  
pp. 450-461 ◽  
Author(s):  
Eduardo Mariano ◽  
Paulo Cesar Ocheuze Trivelin ◽  
José Marcos Leite ◽  
Michele Xavier Vieira Megda ◽  
Rafael Otto ◽  
...  

Considering nitrogen mineralization (N) of soil organic matter is a key aspect for the efficient management of N fertilizers in agricultural systems. Long-term aerobic incubation is the standard technique for calibrating the chemical extraction methods used to estimate the potentially mineralizable N in soil. However, the technique is laborious, expensive and time-consuming. In this context, the aims of this study were to determine the amount of soil mineralizable N in the 0-60 cm layer and to evaluate the use of short-term anaerobic incubation instead of long-term aerobic incubation for the estimation of net N mineralization rates in soils under sugarcane. Five soils from areas without previous N fertilization were used in the layers 0-20, 20-40 and 40-60 cm. Soil samples were aerobically incubated at 35 ºC for 32 weeks or anaerobically incubated (waterlogged) at 40 ºC for seven days to determine the net soil N mineralization. The sand, silt and clay contents were highly correlated with the indexes used for predicting mineralizable N. The 0-40 cm layer was the best sampling depth for the estimation of soil mineralizable N, while in the 40-60 cm layer net N mineralization was low in both incubation procedures. Anaerobic incubation provided reliable estimates of mineralizable N in the soil that correlated well with the indexes obtained using aerobic incubation. The inclusion of the pre-existing NH4+-N content improved the reliability of the estimate of mineralizable N obtained using anaerobic incubation.


Sign in / Sign up

Export Citation Format

Share Document