Effects of Chlorpropham and Storage Temperature on an Abnormal Form of Skin Spot on Potato Tubers

1976 ◽  
Vol 25 (3) ◽  
pp. 144-146 ◽  
Author(s):  
W. M. FRENCH
2014 ◽  
Vol 151 ◽  
pp. 236-242 ◽  
Author(s):  
Hua-Li Xue ◽  
Yang Bi ◽  
Ya-Mei Tang ◽  
Ying Zhao ◽  
Yi Wang

2021 ◽  
Vol 11 (19) ◽  
pp. 8891
Author(s):  
Ana M. Torres-Contreras ◽  
Daniel A. Jacobo-Velázquez

Wounding stress is an effective strategy to increase the content of bioactive compounds in horticultural crops. Potato tubers subjected to wounding stress accumulate chlorogenic acid (CGA) and CGA isomers (neo-CGA and crypto-CGA), which are phenolics that prevent and treat different chronic and degenerative diseases. In this study, the effects of wounding stress and storage temperature (10 °C and 20 °C for 168 h) on the accumulation of CGA isomers in potatoes were evaluated. Results indicated that CGA accumulation was favored when wounded potatoes were stored at 20 °C for 120 h, obtaining a 1923.1% higher concentration when compared with samples before storage. Furthermore, wounded potatoes stored at 10 °C for 120 h showed the highest neo-CGA increase in concentration (712.2%). Likewise, the highest crypto-CGA concentration (84.9% higher than control samples) was quantified in wounded potatoes stored at 20 °C for 144 h. Based on the results from both the present study and previous reports, a strategy that summarizes effective postharvest stress conditions that induce the accumulation of specific CGA isomers in potatoes is presented. The tissue with an increased content of bioactive compounds could be used as raw material to produce functional foods or could be subjected to downstream processing to produce dietary supplements.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2339
Author(s):  
So-Yul Yun ◽  
Jee-Young Imm

Age gelation is a major quality defect in ultra-high-temperature (UHT) pasteurized milk during extended storage. Changes in plasmin (PL)-induced sedimentation were investigated during storage (23 °C and 37 °C, four weeks) of UHT skim milk treated with PL (2.5, 10, and 15 U/L). The increase in particle size and broadening of the particle size distribution of samples during storage were dependent on the PL concentration, storage period, and storage temperature. Sediment analysis indicated that elevated storage temperature accelerated protein sedimentation. The initial PL concentration was positively correlated with the amount of protein sediment in samples stored at 23 °C for four weeks (r = 0.615; p < 0.01), whereas this correlation was negative in samples stored at 37 °C for the same time (r = −0.358; p < 0.01) due to extensive proteolysis. SDS-PAGE revealed that whey proteins remained soluble over storage at 23 °C for four weeks, but they mostly disappeared from the soluble phase of PL-added samples after two weeks’ storage at 37 °C. Transmission electron micrographs of PL-containing UHT skim milk during storage at different temperatures supported the trend of sediment analysis well. Based on the Fourier transform infrared spectra of UHT skim milk stored at 23 °C for three weeks, PL-induced particle size enlargement was due to protein aggregation and the formation of intermolecular β-sheet structures, which contributed to casein destabilization, leading to sediment formation.


Sign in / Sign up

Export Citation Format

Share Document