Factors affecting development of Septoria tritici in winter wheat and its effect on yield

1989 ◽  
Vol 38 (2) ◽  
pp. 246-257 ◽  
Author(s):  
M. R. THOMAS ◽  
R. J. COOK ◽  
J. E KING
1989 ◽  
Vol 11 (4) ◽  
pp. 361-367 ◽  
Author(s):  
J.M. Martin ◽  
R.H. Johnston ◽  
D.E. Mathre

2018 ◽  
Vol 132 (4) ◽  
pp. 1121-1135 ◽  
Author(s):  
Cathérine Pauline Herter ◽  
Erhard Ebmeyer ◽  
Sonja Kollers ◽  
Viktor Korzun ◽  
Tobias Würschum ◽  
...  

1983 ◽  
Vol 63 (1) ◽  
pp. 299-301 ◽  
Author(s):  
S. FREYMAN ◽  
G. B. SCHAALJE

Where winter wheat (Triticum aestivum L. ’Norstar’) was worked-down on 1 May and the plots reseeded to spring wheat immediately, no detrimental effect on yield of spring wheat was found. However, delaying this action until 15 May reduced the yields of spring-seeded wheat because of the harmful effect of decomposing winter wheat and late seeding. Moisture depletion by winter wheat was eliminated as a causative effect by light irrigations during May. Yields of rapeseed (Brassica campestris L. ’Candle’) were not so severely reduced by worked-down winter wheat. The harmful effect was significant only with 30 May cultivation and seeding date.Key words: Phytotoxicity, Triticum aestivum, Brassica campestris, worked-down


Author(s):  
Mariya Gvozdeva ◽  
Galina Volkova

The biologization of plant growing in modern conditions is becoming an urgent trend in agriculture, which helps to reduce the pesticide load. An important aspect of the transition to organic farming is the use of fungicides based on living microorganisms and their metabolic products to curb the development of diseases. Studies were carried out to assess the effectiveness of modern biofungicides against leaf septoria (Septoria tritici) and yellow spot (Pyrenophora tritici-repentis) of winter wheat - Vitaplan, SP, Gamair, SP, Pseudobacterin-2, Zh, Rizoplan, Zh, Trichocin, SP, Fitosporin -M, SP. Fungicide Amistar Extra, SK was used as a chemical standard. The work was carried out in the conditions of the central zone of the Krasnodar Territory in 2019–2020 on the variety Grom, susceptible to leaf spots. The meteorological conditions of the first year of research were favorable for the development of pathogens of leaf spots. In the second year, conditions were extreme, both for the growth of wheat plants and for the development of phytopathogens. For two years of research, the most effective biofungicides against leaf septoria were Fitosporin-M, SP, Pseudobacterin-2, Zh and Vitaplan, SP, the biological effectiveness was 50.0%, 50.0% and 47.1%, respectively; against yellow spot - Vitaplan, SP and Trichocin, SP, biological efficiency was 48.4% and 45.9%. The use of biological fungicides made it possible to save from 2.5% (Gamair, SP) to 12.6% (Trichocin, SP) of the winter wheat grain yield in comparison with the control (without treatment). The high economic efficiency of the use of biofungicides was established, the maximum net profit was noted in the variant treated with Fitosporin - M, SP (9540 rubles / ha)


2021 ◽  
Vol 285 ◽  
pp. 02027
Author(s):  
O. Yu. Kremneva ◽  
K. E. Gasiyan ◽  
A. V. Ponomarev ◽  
A. Kokhmetova ◽  
S. I. Novoseletsky

To carry out effective plant protection measures, it is necessary to take into account all the factors affecting the quality of the crop. The aim of our research was to study the degree of development of leaf diseases of winter wheat and the rate of infestation of crops, depending on the tillage method. The studies were carried out in 2019-2020 at the experimental plots of “Kuban educational farm” in Krasnodar. For the research, four experimental plots with Steppe variety of soft winter wheat were created, where various soil cultivation systems were applied: 1 - No-Till (zero technology), 2 - moldboard-free technology, 3 - recommended, 4 - moldboard technology. The article presents data on the degree of development of diseases and the degree of infestation of winter wheat plants in the crops of test plots with various tillage systems. It was found that the most preferable is the use of the recommended type of treatment, since with it the least number of diseases develops and the degree of development of pathogens is reduced by 2-3 times in comparison with other options. The influence of the tillage method on the number and composition of phytopathogen spores was revealed.


2013 ◽  
Vol 55 (1) ◽  
pp. 233-246
Author(s):  
Ewa Mirzwa-Mróz ◽  
Czesław Zamorski

The response of Polish winter wheat genotypes to <i>M.graminicola</i> (preliminary experiments and cultivar collections) was observed in different regions of Poland. Observations were carried out in 1995-1999. The winter wheat genotypes showed a broad spectrum of reaction to this pathogen. Between 1997 and 1999 the highest degree of infection on winter wheat breeding lines was noted in Kończewice. During this time no genotypes free from infection were observed (preliminary breeding experiments). Cultivars with no symptoms of <i>Septoria tritici</i> blotch (Leszczyńska Wczesna and Żelazna) were found among old genotypes in Słupia Wielka only in earlier experiments (1995-1996). In the years 1997-1999 the winter wheat cultivars were classified into groups on the basis of their response to the pathogen. The degree of infection for the majority cultivars was quite high.


2018 ◽  
Author(s):  
Steven Yates ◽  
Alexey Mikaberidze ◽  
Simon Krattinger ◽  
Michael Abrouk ◽  
Andreas Hund ◽  
...  

Accurate, high-throughput phenotyping for quantitative traits is the limiting factor for progress in plant breeding. We developed automated image analysis to measure quantitative resistance to septoria tritici blotch (STB), a globally important wheat disease, enabling identification of small chromosome intervals containing plausible candidate genes for STB resistance. 335 winter wheat cultivars were included in a replicated field experiment that experienced natural epidemic development by a highly diverse but fungicide-resistant pathogen population. More than 5.4 million automatically generated phenotypes were associated with 13,648 SNP markers to perform a GWAS. We identified 26 chromosome intervals explaining 1.9-10.6% of the variance associated with four resistance traits. Seventeen of the intervals were less than 5 Mbp in size and encoded only 173 genes, including many genes associated with disease resistance. Five intervals contained four or fewer genes, providing high priority targets for functional validation. Ten chromosome intervals were not previously associated with STB resistance. Our experiment illustrates how high-throughput automated phenotyping can accelerate breeding for quantitative disease resistance. The SNP markers associated with these chromosome intervals can be used to recombine different forms of quantitative STB resistance that are likely to be more durable than pyramids of major resistance genes.


1977 ◽  
Vol 57 (1) ◽  
pp. 213-219 ◽  
Author(s):  
L. V. GUSTA ◽  
D. B. FOWLER

Several parameters affecting cold tolerance of winter cereals in artificial freeze tests were examined. Supercooling followed by freezing resulted in death occurring at a higher temperature than when freezing was initiated just below 0 C. The cold tolerance of fully acclimated crowns of winter wheat and a winter rye were reduced an average of 5 C after two thawing and freezing cycles. The duration of freezing in artificial freeze tests has a significant effect on the LD50 of winter cereals. Rapid thawing (2–4 C/min) resulted in death occurring at a higher temperature than slow thawing (0.5–2 C/h).


Sign in / Sign up

Export Citation Format

Share Document