scholarly journals THE EFFECTIVENESS OF BIOLOGICAL FUNGICIDES AGAINST THE SPARE PARTS OF THE LEAVES OF WINTER WHEAT IN THE CONDITIONS OF THE CENTRAL ZONE OF THE KRASNODAR TERRITORY

Author(s):  
Mariya Gvozdeva ◽  
Galina Volkova

The biologization of plant growing in modern conditions is becoming an urgent trend in agriculture, which helps to reduce the pesticide load. An important aspect of the transition to organic farming is the use of fungicides based on living microorganisms and their metabolic products to curb the development of diseases. Studies were carried out to assess the effectiveness of modern biofungicides against leaf septoria (Septoria tritici) and yellow spot (Pyrenophora tritici-repentis) of winter wheat - Vitaplan, SP, Gamair, SP, Pseudobacterin-2, Zh, Rizoplan, Zh, Trichocin, SP, Fitosporin -M, SP. Fungicide Amistar Extra, SK was used as a chemical standard. The work was carried out in the conditions of the central zone of the Krasnodar Territory in 2019–2020 on the variety Grom, susceptible to leaf spots. The meteorological conditions of the first year of research were favorable for the development of pathogens of leaf spots. In the second year, conditions were extreme, both for the growth of wheat plants and for the development of phytopathogens. For two years of research, the most effective biofungicides against leaf septoria were Fitosporin-M, SP, Pseudobacterin-2, Zh and Vitaplan, SP, the biological effectiveness was 50.0%, 50.0% and 47.1%, respectively; against yellow spot - Vitaplan, SP and Trichocin, SP, biological efficiency was 48.4% and 45.9%. The use of biological fungicides made it possible to save from 2.5% (Gamair, SP) to 12.6% (Trichocin, SP) of the winter wheat grain yield in comparison with the control (without treatment). The high economic efficiency of the use of biofungicides was established, the maximum net profit was noted in the variant treated with Fitosporin - M, SP (9540 rubles / ha)

2020 ◽  
Vol 3 (9) ◽  
pp. 231-233
Author(s):  
AliyevSh.K. ◽  
TuychiyevI.U ◽  
Karimov N ◽  
Umaraliev.M.I

The article is focused on the data of the carried works on studying biological efficiency of fungi Triazole 50% on sowing the winter wheat against yellow rust as well as on the height, development and fertility of the wheat. On May 5, 2019 from 9 to 10 o’clock under the temperature 21-23 field experiments of Triazol 50% CS manufactured by the firm “Agroximstar” (Uzbekistan) were carried out on winter wheat as a protector of seeds of winter wheat of Pervitsa sort against the disease of yellow rustin the irrigated conditions in an experimental field of the Institute “Istiklal” of Andijan district of Andijan region. The aim of the given research is to study biological-farming efficiency and determination of optimal norms of preparation expenses and to study the influence of fungicide on the height and development as well as on the fertility of the wheat. The received data showed that the preparation Triazole 50% CS effected on the pathogen of yellow rust favorably and besides that it didn’t effect on seed growth and energy of growth negatively.


2018 ◽  
Vol 132 (4) ◽  
pp. 1121-1135 ◽  
Author(s):  
Cathérine Pauline Herter ◽  
Erhard Ebmeyer ◽  
Sonja Kollers ◽  
Viktor Korzun ◽  
Tobias Würschum ◽  
...  

2021 ◽  
Vol 207 (04) ◽  
pp. 9-16
Author(s):  
Valeriy Burluckiy ◽  
Polina Semeshkina ◽  
Vladimir Mazurov

Abstract. The goal is to study the influence of the predecessor and fertilizers on the yield and quality of winter wheat grain. Methods. The studies were carried out in a long-term stationary field experiment on a gray forest medium loamy soil. Field experience, observations, accounting and generalization of research results were carried out in accordance with the methodological recommendations of B.A. Dospekhov. Statistical processing of the research results was performed using Microsoft Excel 2007 with a 95 % significance level of the results. Results. As a result of the studies, it was noted that the studied predecessors had an insignificant effect on the development of winter wheat plants in the initial phases of growth. The density of winter wheat plants during the germination period varied within the range of 314–323 psc/m2 without the use of fertilizers and 317–328 psc/m2 against the background of their application. Further growth and development of plants took place in close relationship with the studied factors. At the end of the growing season, the number of productive stems was higher on the plots, where the clover of the first year of use was used as a predecessor, both in the control (without fertilizers) and when applying mineral fertilizers. Accordingly, the yield of winter wheat grain was higher for this predecessor, averaging 35.7 c/ha for 2014–2019. Without fertilization, depending on the predecessor, 25.2–32.8 c/ha were obtained, against the background of fertilization – 34.2–39.6 c/ha of winter wheat grain. On average, over the years of research, winter wheat grain contained 10.7–14.0 % protein. Depending on the year, this indicator varied from 8.8 % to 16.8 %. At the same time, the lowest values for the protein content were obtained for the variants without the use of fertilizers. In general, the content of protein and gluten in winter wheat grain largely depended on the application of mineral fertilizers and to a small extent on the predecessor. The weight of 1000 grains, depending on these factors, changed insignificantly.


2013 ◽  
Vol 55 (1) ◽  
pp. 233-246
Author(s):  
Ewa Mirzwa-Mróz ◽  
Czesław Zamorski

The response of Polish winter wheat genotypes to <i>M.graminicola</i> (preliminary experiments and cultivar collections) was observed in different regions of Poland. Observations were carried out in 1995-1999. The winter wheat genotypes showed a broad spectrum of reaction to this pathogen. Between 1997 and 1999 the highest degree of infection on winter wheat breeding lines was noted in Kończewice. During this time no genotypes free from infection were observed (preliminary breeding experiments). Cultivars with no symptoms of <i>Septoria tritici</i> blotch (Leszczyńska Wczesna and Żelazna) were found among old genotypes in Słupia Wielka only in earlier experiments (1995-1996). In the years 1997-1999 the winter wheat cultivars were classified into groups on the basis of their response to the pathogen. The degree of infection for the majority cultivars was quite high.


Author(s):  
T. Ivanova ◽  
K. Podmarkova ◽  
S. Gruzinsky ◽  
M. Patyka ◽  
I. Chabanyuk

Goal. Determination of the biological effect of microbial transformation of organic substances of mushroom substrates for the use of biodestructors. Methods. The subject of the study was the used waste substrate after growing mushrooms. The biodestructors Extrakon and Bionorma Destructor were used for the transformation of organic substances of champignon substrates. Winter wheat ‘Smuglyanka’ variety was used as a test object. Research methods: biotechnological, biochemical, microbiological, statistical, light microscopy. Results. Scientific research was carried out and the literature data on the study of waste mushroom substrates and their use as an organic fertilizer were summarized. The monitoring of the possibilities was carried out using substrates after mushroom cultivation. The influence of domestic Extrakon and the Bionorma Destructor on spent mushroom substrates was studied. Established the benefits of using microfertilizer Extrakon and Bionorma Destructor on spent champignon substrates when growing agricultural plants using the example of winter wheat. The research results showed that when using an extract from a spent mushroom substrate, the stem length of the model increases 43.15% longer, and the root length is 1.17% longer, compared to distilled water. When we used an extract from a spent mushroom substrate fermented by Extrakon, the stem length of the model object is 25.12% longer, in comparison with the control, it is 79.11% longer. The length of the roots is 35.66% more compared with the use of an extract from an unfermented spent mushroom substrate, compared with the control — 37.24% more. When Destructor Bionorma was used, the growth of the model object is inhibited. Conclusions. Preparation Extrakon with a spent mushroom substrate in plants, the root system increases due to this, and the feeding area increases. This is due to the fact that the preparation Extrakon is designed for introduction into the soil and for its use the beneficial microflora of the soil is activated, transforms the components of the spent liver substrate, which are then absorbed by the plants and positively affect the nutrition of the root system.


2018 ◽  
Author(s):  
Steven Yates ◽  
Alexey Mikaberidze ◽  
Simon Krattinger ◽  
Michael Abrouk ◽  
Andreas Hund ◽  
...  

Accurate, high-throughput phenotyping for quantitative traits is the limiting factor for progress in plant breeding. We developed automated image analysis to measure quantitative resistance to septoria tritici blotch (STB), a globally important wheat disease, enabling identification of small chromosome intervals containing plausible candidate genes for STB resistance. 335 winter wheat cultivars were included in a replicated field experiment that experienced natural epidemic development by a highly diverse but fungicide-resistant pathogen population. More than 5.4 million automatically generated phenotypes were associated with 13,648 SNP markers to perform a GWAS. We identified 26 chromosome intervals explaining 1.9-10.6% of the variance associated with four resistance traits. Seventeen of the intervals were less than 5 Mbp in size and encoded only 173 genes, including many genes associated with disease resistance. Five intervals contained four or fewer genes, providing high priority targets for functional validation. Ten chromosome intervals were not previously associated with STB resistance. Our experiment illustrates how high-throughput automated phenotyping can accelerate breeding for quantitative disease resistance. The SNP markers associated with these chromosome intervals can be used to recombine different forms of quantitative STB resistance that are likely to be more durable than pyramids of major resistance genes.


Author(s):  
Е. V. Mikhalev ◽  
◽  
N.А. Borisov ◽  
N. А. Mineeva ◽  
◽  
...  

The research aim is to identify the most energy-saving and cost-effective technology for winter wheat cultivation. The maximum moisture content of soil was recorded when it was processed using Mini-till technology – from 17.2% to 17.9%, and the lowest - with traditional technology – from 15.7% to 16.4%. The lowest soil density with traditional winter wheat technology is both on the background with fertilizer (1.18%) and on the background without fertilizer (1.21%). The lowest contamination of crops with traditional technology without mineral fertilizers (42 pcs/м2). With the Mini-till technology, the total blockage increased to 51pcs/м2, and with the No-till technology, it was maximum- 128 pcs/м2. Against the mineral fertilizers, the same tendency of total blockage-from – from 40 pcs/м2 to 132 pcs/м2, respectively. With No-till technology, the total plant damage increased from 17.0 % to 14.6 %, with traditional treatment – from 12.4% to 10.1%, and with Mini-till technology-from 12.7% to 9.6%. The yield of winter wheat when using traditional plowing against the background of mineral fertilizer is 3.59 t / ha, and against the background without mineral fertilizer – 2.24 t / ha. The yield of Mini-till technology for mineral background is 3.13 t / ha, and without fertilizers-1.81 t / ha. With the No-till technology, the winter wheat yield is 1.69 t/ha, and without fertilizers – 1.11 t/ha. The highest level of profitability with Mini-till technology against the background of mineral fertilizers-73.2%.


Sign in / Sign up

Export Citation Format

Share Document