FACTORS AFFECTING THE COLD SURVIVAL OF WINTER CEREALS

1977 ◽  
Vol 57 (1) ◽  
pp. 213-219 ◽  
Author(s):  
L. V. GUSTA ◽  
D. B. FOWLER

Several parameters affecting cold tolerance of winter cereals in artificial freeze tests were examined. Supercooling followed by freezing resulted in death occurring at a higher temperature than when freezing was initiated just below 0 C. The cold tolerance of fully acclimated crowns of winter wheat and a winter rye were reduced an average of 5 C after two thawing and freezing cycles. The duration of freezing in artificial freeze tests has a significant effect on the LD50 of winter cereals. Rapid thawing (2–4 C/min) resulted in death occurring at a higher temperature than slow thawing (0.5–2 C/h).

1976 ◽  
Vol 56 (3) ◽  
pp. 673-678 ◽  
Author(s):  
L. V. GUSTA ◽  
D. B. FOWLER

Cold-hardened crowns of winter wheat (Triticum aestivum L.) and a winter rye (Secale cereale L.) readily dehardened upon exposure to warm temperatures. Crowns dehardened at a faster rate at 20 C than at 10 and 15 C. Dehardened plants were capable of rehardening in a short period of time upon exposure to cold-acclimating conditions. In all the dehardening studies, there was a high positive correlation between cold survival and water content of the crowns. Plants collected in the fall and stored at −2.5 C maintained the same level of hardiness for 17 wk.


1958 ◽  
Vol 30 (1) ◽  
pp. 251-263
Author(s):  
E. A. Jamalainen

The cause of damage from low-temperature parasitic fungi during overwintering was in the experiments with winter rye mainly Fusarium nivale (Fr.) Ces., in the experiments with winter wheat both F. nivale and the Typhula spp. fungi, T. itoana Imai and T. idahoensis Remsb. The pentachloronitrobenzene compounds PCNB and the organic mercury compounds phenylmercuryacetate (PMA) and phenylmercurysalicylate (PMS) were effective against both the Fusarium and the Typhula fungi in the experiments in which the treatments of the seedlings had been performed in November under weather conditions normal for South Finland. The effect of treatments performed correspondingly earlier in October was slighter. In experiments made in South Finland in the winter 1955—56 and in the winter 1957—58, when low-temperature parasitic fungi appeared in abundance, the increases in yield due to treatment of the seedlings with PCNB and with the mercury compounds PMA and PMS performed in November were very considerable; winter rye (7 tests) 12—122 per cent, winter wheat (4 tests) 31—735 per cent, and winter barley (one test) 124 per cent. – In the experiments made in 1956—57 in South Finland no increase in yield was obtained through treatment of the seedlings because low-temperature fungi did not appear. The mercury compounds PMA and PMS when applied on the stands in autumn were more effective against low-temperature parasitic fungi on winter cereals than the PCNB preparations. The effect of zineb and hexachloronitrobenzene (HCNB) preparations in controlling low-temperature parasitic fungi on winter cereals by treating the stands in autumn was found to be much slighter than the effect of PCNB and of the organic mercury fungicides. The amount of active ingredient in the PCNB preparations was in most experiments 5 kg per hectare. In the two PMA preparations used in the experiments the amount of active ingredient was 125 and 425 kg per hectare, the corresponding amounts of Hg were 75 and 212.5 g per hectare. The amount of active ingredient in the two PMS preparations was 235 and 470 g per hectare, the corresponding amounts of Hg were 110.5 and 221 g per hectare. In the experiment on seed dressing with winter rye in 1955—56 it was ascertained that in addition to the organic mercury preparations also the thiram preparation was effective against Fusarium mould. In seed dressing experiments in Finland considerable increases in yield especially of winter rye have been obtained by using organic mercury compounds when the seed has been normally germinating and not infested by mould. This shows that the small amount of mercury that accompanies the seed into the soil is effective in controlling the low-temperature fungi during the winter.


1988 ◽  
Vol 68 (2) ◽  
pp. 449-456 ◽  
Author(s):  
P. NADEAU ◽  
R. PAQUIN

Cold tolerance (LT50) and level of polyamines were measured in crowns of winter wheat (Triticum aestivum L.), winter rye (Secale cereale L.), timothy (Phleum pratense L.) and alfalfa (Medicago sativa L.) grown in two Quebec locations widely different in climates. Putrescine increased in winter cereals and timothy during cold hardening and showed a major peak at the end of winter at both locations (Saint-Hyacinthe and La Pocatière). There was a significant correlation between putrescine levels and cold tolerance during fall. However, in alfalfa, putrescine increased only at the end of winter and, like other species, decreased rapidly as plants underwent spring deacclimation. Levels of spermine and cadaverine remained low and showed little variation during winter. Spermidine levels were higher than spermine but remained stable during fall and winter. No significant correlation was observed between spermine, spermidine and cadaverine levels and cold hardiness.Key words: Polyamines, winter cereals, forage species, cold hardening


1986 ◽  
Vol 66 (4) ◽  
pp. 837-843
Author(s):  
D. B. FOWLER ◽  
M. L. GRAHAM ◽  
R. ASHFORD

The effects of 2,4-D and MCPA amine treatments on cold tolerance and other agronomic characters of winter wheat (Triticum aestivum L.) and rye (Secale cereale L.) were studied in controlled environment and field trails. For both species, the level of cold tolerance achieved in controlled environments was reduced following exposure to 2,4-D and MCPA at rates up to 2.24 kg ha−1. In contrast, similar rates of fall applied 2,4-D and MCPA did not affect the cold tolerance of wheat and rye growing in the field. Treatment of plants from different seeding dates indicated that the observed field herbicide tolerance was not influenced by large differences in plant growth stage. Yield and other agronomic characters were also unaffected by fall 2,4-D and MCPA treatment. In contrast, broadleaf weed control was obtained with rates as low as 0.28 kg ha−1 for both herbicides, emphasizing the large safety margin between rates required for effective winter annual weed control and crop tolerance levels. From a practical standpoint, the influence of other management practices, such as delayed seeding, were of much greater importance in winter cereal production than the effects of commerical rates of 2,4-D or MCPA applied in the fall for broadleaf weed control.Key words: Wheat (winter), rye, 2,4-D amine, MCPA amine, cold tolerance


The results of long-term research on the influence of main indicators on their agro-resource potential are summarized on gray forest soils of the upper Volga region. For the conditions of the Vladimir Opolie, the probable yield of biomass and the main products of field crops were calculated at different coefficients ofphotosynthetic active radiation (FAR) use. Calculations of the main product yields are made taking into account the distribution of biomass to by-products and crop-root residues. For field crops of the studied crop rotations, the coefficients of precipitation utilization are estimated. They varied from 44 to 71%, depending on the crop rotation culture. On the slope of the southern exposure when cultivating winter cereals and perennial grasses, the main moisture losses were observed in the spring during snowmelt, when growing spring crops and potatoes, they were close in the autumn and spring periods. The sizes of moisture use by crops depending on the fertilizer systems for the creation of 1 C of grain units (g.u.) and from sub-arable layers are determined. In comparison with the liming background, the use of organic fertilizers reduced the water consumption coefficient from 9.6 to 8.5 mm/C g.u., their combination with a single dose of NPK - up to 7.3, and with a double dose - up to 6.8 mm / C g.u. Based on the amount of moisture used by crops, their possible yields are calculated. In spring crops, the amount of precipitation consumed (326-356 mm) corresponds to the use of 2.7-3% of the FAR and provides 54-60 C/ha of grain, in winter rye and wheat - about 4% of the FAR (yield 71-80 C/ha). In perennial grasses for 2 mowing, the moisture consumed is enough to use about 3% of the FAR., in potatoes -1.5%.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1495
Author(s):  
Muhammad Javaid Akhter ◽  
Bo Melander ◽  
Solvejg Kopp Mathiassen ◽  
Rodrigo Labouriau ◽  
Svend Vendelbo Nielsen ◽  
...  

Vulpia myuros has become an increasing weed problem in winter cereals in Northern Europe. However, the information about V. myuros and its behavior as an arable weed is limited. Field and greenhouse experiments were conducted in 2017/18 and 2018/19, at the Department of Agroecology in Flakkebjerg, Denmark to investigate the emergence, phenological development and growth characteristics of V. myuros in monoculture and in mixture with winter wheat, in comparison to Apera spica-venti, Alopecurus myosuroides and Lolium multiflorum. V. myuros emerged earlier than A. myosuroides and A. spica-venti but later than L. multiflorum. Significant differences in phenological development were recorded among the species. Overall phenology of V. myuros was more similar to that of L. multiflorum than to A. myosuroides and A. spica-venti. V. myuros started seed shedding earlier than A. spica-venti and L. multiflorum but later than A. myosuroides. V. myuros was more sensitive to winter wheat competition in terms of biomass production and fecundity than the other species. Using a target-neighborhood design, responses of V. myuros and A. spica-venti to the increasing density of winter wheat were quantified. At early growth stages “BBCH 26–29”, V. myuros was suppressed less than A. spica-venti by winter wheat, while opposite responses were seen at later growth stages “BBCH 39–47” and “BBCH 81–90”. No significant differences in fecundity characteristics were observed between the two species in response to increasing winter wheat density. The information on the behavior of V. myuros gathered by the current study can support the development of effective integrated weed management strategies for V. myuros.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 512
Author(s):  
Alemayehu Worku ◽  
Tamás Tóth ◽  
Szilvia Orosz ◽  
Hedvig Fébel ◽  
László Kacsala ◽  
...  

The objective of this study was to evaluate the aroma profile, microbial and chemical quality of winter cereals (triticale, oats, barley and wheat) and Italian ryegrass (Lolium multiflorum Lam., IRG) plus winter cereal mixture silages detected with an electronic nose. Four commercial mixtures (mixture A (40% of two cultivars of winter triticale + 30% of two cultivars of winter oats + 20% of winter barley + 10% of winter wheat), mixture B (50% of two cultivars of winter triticale + 40% of winter barley + 10% of winter wheat), mixture C (55% of three types of Italian ryegrass + 45% of two cultivars of winter oat), mixture D (40% of three types of Italian ryegrass + 30% of two cultivars of winter oat + 15% of two cultivars of winter triticale + 10% of winter barley + 5% of winter wheat)) were harvested, wilted and ensiled in laboratory-scale silos (n = 80) without additives. Both the principal component analysis (PCA) score plot for aroma profile and linear discriminant analysis (LDA) classification revealed that mixture D had different aroma profile than other mixture silages. The difference was caused by the presence of high ethanol and LA in mixture D. Ethyl esters such as ethyl 3-methyl pentanoate, 2-methylpropanal, ethyl acetate, isoamyl acetate and ethyl-3-methylthiopropanoate were found at different retention indices in mixture D silage. The low LA and higher mold and yeast count in mixture C silage caused off odour due to the presence of 3-methylbutanoic acid, a simple alcohol with unpleasant camphor-like odor. At the end of 90 days fermentation winter cereal mixture silages (mixture A and B) had similar aroma pattern, and mixture C was also similar to winter cereal silages. However, mixture D had different aromatic pattern than other ensiled mixtures. Mixture C had higher (p < 0.05) mold and yeast (Log10 CFU (colony forming unit)/g) counts compared to mixture B. Mixture B and C had higher acetic acid (AA) content than mixture A and D. The lactic acid (LA) content was higher for mixture B than mixture C. In general, the electronic nose (EN) results revealed that the Italian ryegrass and winter cereal mixtures (mixture D) had better aroma profile as compared to winter cereal mixtures (mixture A and B). However, the cereal mixtures (mixture A and B) had better aroma quality than mixture C silage. Otherwise, the EN technology is suitable in finding off odor compounds of ensiled forages.


1989 ◽  
Vol 11 (4) ◽  
pp. 361-367 ◽  
Author(s):  
J.M. Martin ◽  
R.H. Johnston ◽  
D.E. Mathre

1996 ◽  
Vol 76 (2) ◽  
pp. 251-257 ◽  
Author(s):  
V. S. Baron ◽  
E. A. de St Remy ◽  
D. F. Salmon ◽  
A. C. Dick

Spring planted mixtures of spring and winter cereals maximize dry matter yield and provide fall pasture by regrowth of the winter cereal. However, delay of initial harvest may reduce the winter cereal component and therefore subsequent regrowth yield. Research was conducted at Lacombe, Alberta to investigate the effect of time of initial cut (stage), winter cereal species (species) and cropping system (monocrop and mixture) on winter cereal shoot weight, leaf carbon exchange efficiency and shoot morphology. These parameters may be related to adaptation of winter cereals to growth and survival in the mixture. Winter cereal plants were grown in pails embedded in monocrop plots of fall rye (Secale cereale L.), winter triticale (X Triticosecale Wittmack) and winter wheat (Triticum aestivum L.) and in binary mixtures with Leduc barley (Hordeum vulgare L.). The plants were removed when the barley reached the boot (B), heads emerged (H), H + 2, H + 4 and H + 6 wk stages. Shoot weight was generally smaller in the mixture than in the monocrop and wheat was reduced more than fall rye and triticale in the mixture compared to the monocrop. Dark respiration rate (r = −0.54) and carbon exchange (r = 0.36) under low light intensity were correlated (P < 0.05) to shoot size in the mixture. Fall rye and winter triticale had lower dark respiration rates than winter wheat. Leaf area index (LAI) was closely correlated (r = 0.83 and 0.84) with shoot weight in both the mixture and monocrop. While species failed to exhibit clear cut differences for LAI, fall rye and winter triticale were reduced less than winter wheat in the mixture relative to the monocrop. Stage was the dominant factor affecting winter cereal growth in both cropping systems, but fall rye and triticale exhibited superior morphological features, and their carbon exchange responses to light were more efficient than wheat, which should allow them to be sustained longer under the shaded conditions of a mixture. Key words: Delayed harvest, shade, spring and winter cereal mixtures, adaptation, carbon exchange, respiration


2021 ◽  
Vol 285 ◽  
pp. 02027
Author(s):  
O. Yu. Kremneva ◽  
K. E. Gasiyan ◽  
A. V. Ponomarev ◽  
A. Kokhmetova ◽  
S. I. Novoseletsky

To carry out effective plant protection measures, it is necessary to take into account all the factors affecting the quality of the crop. The aim of our research was to study the degree of development of leaf diseases of winter wheat and the rate of infestation of crops, depending on the tillage method. The studies were carried out in 2019-2020 at the experimental plots of “Kuban educational farm” in Krasnodar. For the research, four experimental plots with Steppe variety of soft winter wheat were created, where various soil cultivation systems were applied: 1 - No-Till (zero technology), 2 - moldboard-free technology, 3 - recommended, 4 - moldboard technology. The article presents data on the degree of development of diseases and the degree of infestation of winter wheat plants in the crops of test plots with various tillage systems. It was found that the most preferable is the use of the recommended type of treatment, since with it the least number of diseases develops and the degree of development of pathogens is reduced by 2-3 times in comparison with other options. The influence of the tillage method on the number and composition of phytopathogen spores was revealed.


Sign in / Sign up

Export Citation Format

Share Document