Contributions of disease resistance and escape to the control of septoria tritici blotch of wheat

2009 ◽  
Vol 58 (5) ◽  
pp. 910-922 ◽  
Author(s):  
L. S. Arraiano ◽  
N. Balaam ◽  
P. M. Fenwick ◽  
C. Chapman ◽  
D. Feuerhelm ◽  
...  
2021 ◽  
Author(s):  
Dinesh Kumar Saini ◽  
Amneek Chahal ◽  
Neeraj Pal ◽  
Puja Srivast ◽  
Pushpendra Kumar Gupta

Abstract In wheat, meta-QTLs (MQTLs), and candidate genes (CGs) were identified for multiple disease resistance (MDR). For this purpose, information was collected from 58 studies for mapping QTLs for resistance to one or more of the five diseases. As many as 493 QTLs were available from these studies, which were distributed in five diseases as follows: septoria tritici blotch (STB) 126 QTLs; septoria nodorum blotch (SNB), 103; fusarium head blight (FHB), 184; karnal bunt (KB), 66, and loose smut (LS), 14. Of these 493 QTLs, only 291 QTLs could be projected onto a consensus genetic map, giving 63 MQTLs. The CI of the MQTLs ranged from 0.04 to 15.31 cM with an average of 3.09 cM per MQTL. This is a ~ 4.39 fold reduction from the CI of initial QTLs, which ranged from 0 to 197.6 cM, with a mean of 13.57 cM. Of 63 MQTLs, 60 were anchored to the reference physical map of wheat (the physical interval of these MQTLs ranged from 0.30 to 726.01 Mb with an average of 74.09 Mb). Thirty-eight (38) of these MQTLs were verified using marker-trait associations (MTAs) derived from genome-wide association studies. As many as 874 CGs were also identified which were further investigated for differential expression using data from five transcriptome studies, resulting in 194 differentially expressed genes (DEGs). Among the DEGs, 85 genes had functions previously reported to be associated with disease resistance. These results should prove useful for fine mapping of MDR genes and marker-assisted breeding.


2018 ◽  
Author(s):  
Steven Yates ◽  
Alexey Mikaberidze ◽  
Simon Krattinger ◽  
Michael Abrouk ◽  
Andreas Hund ◽  
...  

Accurate, high-throughput phenotyping for quantitative traits is the limiting factor for progress in plant breeding. We developed automated image analysis to measure quantitative resistance to septoria tritici blotch (STB), a globally important wheat disease, enabling identification of small chromosome intervals containing plausible candidate genes for STB resistance. 335 winter wheat cultivars were included in a replicated field experiment that experienced natural epidemic development by a highly diverse but fungicide-resistant pathogen population. More than 5.4 million automatically generated phenotypes were associated with 13,648 SNP markers to perform a GWAS. We identified 26 chromosome intervals explaining 1.9-10.6% of the variance associated with four resistance traits. Seventeen of the intervals were less than 5 Mbp in size and encoded only 173 genes, including many genes associated with disease resistance. Five intervals contained four or fewer genes, providing high priority targets for functional validation. Ten chromosome intervals were not previously associated with STB resistance. Our experiment illustrates how high-throughput automated phenotyping can accelerate breeding for quantitative disease resistance. The SNP markers associated with these chromosome intervals can be used to recombine different forms of quantitative STB resistance that are likely to be more durable than pyramids of major resistance genes.


2008 ◽  
Vol 59 (5) ◽  
pp. 421 ◽  
Author(s):  
F. C. Ogbonnaya ◽  
M. Imtiaz ◽  
H. S. Bariana ◽  
M. McLean ◽  
M. M. Shankar ◽  
...  

A collection of 253 synthetic hexaploid wheats (SHWs) produced from 192 Aegilops tauschii accessions and 39 elite durum varieties were studied to identify, characterise, and evaluate potentially untapped diversity of disease resistance in wheat. The diseases for which resistance was sought included cereal cyst nematode (CCN), root lesion nematode (RLN), Stagonospora nodorum blotch (SNB), Septoria tritici blotch (STB), and the 3 rusts, leaf rust, stem rust, and stripe rust, all important diseases of bread wheat worldwide, which can severely reduce wheat yield and quality. The SHWs exhibited a wide spectrum of resistance to the 8 pathogens. The frequency of disease-resistant SHWs ranged from 1% for one species of RLN (Pratylenchus neglectus), 3% and 10% for Septoria nodorum leaf and glume blotch, 10% for seedling resistance to yellow leaf spot, 16% for CCN, 21% for the second species of RLN (Pratylenchus thornei), 73% for Septoria tritici blotch, and 15%, 40%, and 24% for leaf rust, stem rust, and stripe rust, respectively. Five SHWs, Aus26860, Aus30258, Aus30294, Aus30301, and Aus30304, exhibited high levels of resistance to CCN, YLP, STB, LR, and SR, while 56 SHWs showed resistance to either 3 or 4 diseases. The genetics of resistance to CCN in some of the SHWs revealed that some of the accessions carry the same CCN gene(s) against pathotype Ha13, while others may carry different resistance gene(s). Additional studies were carried out to understand the relationship between the resistances identified in SHWs and the ones already present in common wheat, in particular the resistance genes Cre1 and Cre3 against CCN. The use of perfect markers associated with Cre1 and Cre3 suggested that some SHWs may carry a new CCN resistance gene(s), which could be deployed in breeding programs to increase the diversity of available resistance. The identification of SHWs with resistance to a range of diseases provides an opportunity to generate genetic knowledge and resistant germplasm to be used in future variety development.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Steven Yates ◽  
Alexey Mikaberidze ◽  
Simon G. Krattinger ◽  
Michael Abrouk ◽  
Andreas Hund ◽  
...  

Accurate, high-throughput phenotyping for quantitative traits is a limiting factor for progress in plant breeding. We developed an automated image analysis to measure quantitative resistance to septoria tritici blotch (STB), a globally important wheat disease, enabling identification of small chromosome intervals containing plausible candidate genes for STB resistance. 335 winter wheat cultivars were included in a replicated field experiment that experienced natural epidemic development by a highly diverse but fungicide-resistant pathogen population. More than 5.4 million automatically generated phenotypes were associated with 13,648 SNP markers to perform the GWAS. We identified 26 chromosome intervals explaining 1.9-10.6% of the variance associated with four independent resistance traits. Sixteen of the intervals overlapped with known STB resistance intervals, suggesting that our phenotyping approach can identify simultaneously (i.e., in a single experiment) many previously defined STB resistance intervals. Seventeen of the intervals were less than 5 Mbp in size and encoded only 173 genes, including many genes associated with disease resistance. Five intervals contained four or fewer genes, providing high priority targets for functional validation. Ten chromosome intervals were not previously associated with STB resistance, perhaps representing resistance to pathogen strains that had not been tested in earlier experiments. The SNP markers associated with these chromosome intervals can be used to recombine different forms of quantitative STB resistance that are likely to be more durable than pyramids of major resistance genes. Our experiment illustrates how high-throughput automated phenotyping can accelerate breeding for quantitative disease resistance.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1108
Author(s):  
Dominika Piaskowska ◽  
Urszula Piechota ◽  
Magdalena Radecka-Janusik ◽  
Paweł Czembor

Septoria tritici blotch (STB) is one of the most devastating foliar diseases of wheat worldwide. Host resistance is the most economical and safest method of controlling the disease, and information on resistance loci is crucial for effective breeding for resistance programs. In this study we used a mapping population consisting of 126 doubled-haploid lines developed from a cross between the resistant cultivar Mandub and the susceptible cultivar Begra. Three monopycnidiospore isolates of Z. tritici with diverse pathogenicity were used to test the mapping population and parents’ STB resistance at the seedling stage (under a controlled environment) and adult plant stage (polytunnel). For both types of environments, the percentage leaf area covered by necrosis (NEC) and pycnidia (PYC) was determined. A linkage map comprising 5899 DArTSNP and silicoDArT markers was used for the quantitative trait loci (QTL) analysis. The analysis showed five resistance loci on chromosomes 1B, 2B and 5B, four of which were derived from cv. Mandub. The location of QTL detected in our study on chromosomes 1B and 5B may suggest a possible identity or close linkage with Stb2/Stb11/StbWW and Stb1 loci, respectively. QStb.ihar-2B.4 and QStb.ihar-2B.5 detected on chromosome 2B do not co-localize with any known Stb genes. QStb.ihar-2B.4 seems to be a new resistance locus with a moderate effect (explaining 29.3% of NEC and 31.4% of PYC), conferring resistance at the seedling stage. The phenotypic variance explained by QTL detected in cv. Mandub ranged from 11.9% to 70.0%, thus proving that it is a good STB resistance source and can potentially be utilized in breeding programs.


Genome ◽  
2004 ◽  
Vol 47 (5) ◽  
pp. 789-794 ◽  
Author(s):  
M Razavi ◽  
G R Hughes

This study examined the genetic structure of a Saskatchewan population of Mycosphaerella graminicola, cause of the foliar disease Septoria tritici blotch of wheat. Such knowledge is valuable for understanding the evolutionary potential of this pathogen and for developing control strategies based on host resistance. Nine pairs of single-locus microsatellite primers were used to analyze the genomic DNA of 90 isolates of M. graminicola that were collected using a hierarchical sampling procedure from different locations, leaves, and lesions within a wheat field near Saskatoon. Allelic series at eight different loci were detected. The number of alleles per locus ranged from one to five with an average of three alleles per locus. Genetic diversity values ranged from 0.04 to 0.67. Partitioning the total genetic variability into within- and among-location components revealed that 88% of the genetic variability occurred within locations, i.e., within areas of 1 m2, but relatively little variability occurred among locations. Low variability among locations and a high degree of variability within locations would result if the primary source of inoculum was airborne ascospores, which would be dispersed uniformly within the field. This finding was confirmed by gametic disequilibrium analysis and suggests that the sexual reproduction of M. graminicola occurs in Saskatchewan.Key words: Mycosphaerella graminicola, SSR markers, sexual reproduction, genetic diversity.


2018 ◽  
Vol 132 (4) ◽  
pp. 1121-1135 ◽  
Author(s):  
Cathérine Pauline Herter ◽  
Erhard Ebmeyer ◽  
Sonja Kollers ◽  
Viktor Korzun ◽  
Tobias Würschum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document