Stimulation of Organ Specific and Non-organ Specific Antigens on the Surface of Thyroid Cells by Phytohaemagglutinin P

1973 ◽  
Vol 2 (3) ◽  
pp. 239-250 ◽  
Author(s):  
J. JONSSON ◽  
ASTRID FAGRAEUS ◽  
K. G SUNDQVIST
1997 ◽  
Vol 186 (12) ◽  
pp. 2005-2012 ◽  
Author(s):  
Srinivas Akkaraju ◽  
Karen Canaan ◽  
Christopher C. Goodnow

Graves' Disease results from the production of autoantibodies against receptors for thyroid stimulating hormone (TSH) on thyroid epithelial cells, and represents the prototype for numerous autoimmune diseases caused by autoantibodies that bind to organ-specific cell membrane antigens. To study how humoral tolerance is normally maintained to organ-specific membrane antigens, transgenic mice were generated selectively expressing membrane-bound hen egg lysozyme (mHEL) on the thyroid epithelium. In contrast to the deletion of autoreactive B cells triggered by systemic mHEL (Hartley, S.B., J. Crosbie, R. Brink, A.B. Kantor, A. Basten, and C.C. Goodnow. 1991. Nature. 353:765–769), selective expression of mHEL autoantigen on thyroid cells did not trigger elimination or inactivation of circulating HEL-reactive B cells. These results provide evidence that tolerance is not actively acquired to organ-specific antigens in the preimmune B cell repertoire, underscoring the importance of maintaining tolerance to such antigens by other mechanisms. The role of an intact endothelial barrier in sequestering organ-specific antigens from circulating preimmune B cells is discussed.


Development ◽  
1984 ◽  
Vol 80 (1) ◽  
pp. 137-153
Author(s):  
Sadao Yasugi

Quail allantoic endoderm was implanted into the presumptive digestive-tract area of chick embryos, and the differentiation of the endoderm was examined morphologically and immunocytochemically with antisera against pepsinogens and sucrase. The allantoic endoderm was incorporated into the host digestive organs. It often became continuous with the host endoderm and formed a chimaeric digestive-tract epithelium. It differentiated morphologically into the epithelium of the digestive organ into which it was incorporated, showing the morphological inductive ability in situ of the digestive-tract mesenchyme against the allantoic endoderm. However, the allantoic endoderm did not produce pepsinogens even when it was incorporated into the host proventricular mesenchyme and formed well-developed proventricular glands. This result indicates that the heterotypic morphogenesis of the allantoic endoderm is not necessarily accompanied by the heterotypic cytodifferentiation. In contrast, the anti-sucrase antiserum-reactive cells often differentiated in the allantoic endoderm incorporated into not only the intestine but also other organs. This confirmed our previous observation that the allantoic endoderm has a tendency to differentiate into the intestinal epithelium in the heterologous environment.


Author(s):  
Ritopa Das ◽  
Sofia Langou ◽  
Thinh T. Le ◽  
Pooja Prasad ◽  
Feng Lin ◽  
...  

Immunotherapy is becoming a very common treatment for cancer, using approaches like checkpoint inhibition, T cell transfer therapy, monoclonal antibodies and cancer vaccination. However, these approaches involve high doses of immune therapeutics with problematic side effects. A promising approach to reducing the dose of immunotherapeutic agents given to a cancer patient is to combine it with electrical stimulation, which can act in two ways; it can either modulate the immune system to produce the immune cytokines and agents in the patient’s body or it can increase the cellular uptake of these immune agents via electroporation. Electrical stimulation in form of direct current has been shown to reduce tumor sizes in immune-competent mice while having no effect on tumor sizes in immune-deficient mice. Several studies have used nano-pulsed electrical stimulations to activate the immune system and drive it against tumor cells. This approach has been utilized for different types of cancers, like fibrosarcoma, hepatocellular carcinoma, human papillomavirus etc. Another common approach is to combine electrochemotherapy with immune modulation, either by inducing immunogenic cell death or injecting immunostimulants that increase the effectiveness of the treatments. Several therapies utilize electroporation to deliver immunostimulants (like genes encoded with cytokine producing sequences, cancer specific antigens or fragments of anti-tumor toxins) more effectively. Lastly, electrical stimulation of the vagus nerve can trigger production and activation of anti-tumor immune cells and immune reactions. Hence, the use of electrical stimulation to modulate the immune system in different ways can be a promising approach to treat cancer.


2005 ◽  
Vol 25 (7) ◽  
pp. 2846-2852 ◽  
Author(s):  
Jens Behrends ◽  
Serge Clément ◽  
Bernard Pajak ◽  
Viviane Pohl ◽  
Carine Maenhaut ◽  
...  

ABSTRACT Rhophilin 2 is a Rho GTPase binding protein initially isolated by differential screening of a chronically thyrotropin (TSH)-stimulated dog thyroid cDNA library. In thyroid cell culture, expression of rhophilin 2 mRNA and protein is enhanced following TSH stimulation of the cyclic AMP (cAMP) transduction cascade. Yeast two-hybrid screening and coimmunoprecipitation have revealed that the GTP-bound form of RhoB and components of the cytoskeleton are protein partners of rhophilin 2. These results led us to suggest that rhophilin 2 could play an important role downstream of RhoB in the control of endocytosis during the thyroid secretory process which follows stimulation of the TSH/cAMP pathway. To validate this hypothesis, we generated rhophilin 2-deficient mice and analyzed their thyroid structure and function. Mice lacking rhophilin 2 develop normally, have normal life spans, and are fertile. They have no visible goiter and no obvious clinical signs of hyper- or hypothyroidism. The morphology of thyroid cells and follicles in these mice were normal, as were the different biological tests performed to investigate thyroid function. Our results indicate that rhophilin 2 does not play an essential role in thyroid physiology.


1987 ◽  
Vol 115 (2) ◽  
pp. 282-288 ◽  
Author(s):  
Kazuya Zeki ◽  
Takashi Fujihira ◽  
Fumihiko Shirakawa ◽  
Kenichi Watanabe ◽  
Sumiya Eto

Abstract. We investigated the percentage of circulating HLA-DR antigen positive (Ia antigen positive: Ia+) T cells and the additive proliferation by non-specific mitogens and thyroid-specific antigens by means of a cytotoxicity test in autoimmune thyroid diseases. Furthermore, we studied the stimulative function of circulating Ia+T cells in autologous mixed lymphocyte reactions. %Ia+T cells were significantly increased in patients with autoimmune thyroid diseases compared with those in normal controls. They were additionally increased by the stimulation of TSH-receptor or thyroid-microsome in patients with Graves' disease, and by the stimulation of thyroglobulin and thyroid-microsome in patients with Hashimoto's thyroiditis. As to the cellular immune function, circulating Ia+T cells stimulated Ia− T cells in autologous MLR in patients with autoimmune thyroid diseases. These data suggest that some of the T cells are already activated in vivo, that the activation of T cells may be by thyroid-specific antigens, and that these activated (Ia+) T cells may be able sequentially to induce the activation of inactivated (Ia−) T cells in autoimmune thyroid diseases.


Sign in / Sign up

Export Citation Format

Share Document