The Expression of Carbohydrate Antigens in Activated T Cells and in Autoimmune Diseases

1994 ◽  
Vol 40 (6) ◽  
pp. 636-642 ◽  
Author(s):  
F. FORTUNE ◽  
J. WALKER ◽  
M. LEFRANCOIS ◽  
T. LEHNER
2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Mepur H. Ravindranath

The anti-HLA-E IgG2a mAbs, TFL-006 and TFL-007, reacted with all HLA-I antigens, similar to the therapeutic preparations of IVIg. Indeed, IVIg lost its HLA reactivity, when its HLA-E reactivity was adsorbed out. US-FDA approved IVIg to reduce antibodies in autoimmune diseases. But the mechanism underlying IVIg-mediated antibody reduction could not be ascertained due to the presence of other polyclonal antibodies. In spite of it, the cost prohibitive high or low IVIg is administered to patients waiting for donor organ and for allograft recipients for lowering antiallograft antibodies. A mAb that could mimic IVIg in lowering Abs, with defined mechanism of action, would be highly beneficial for patients. Demonstrably, the anti-HLA-E mAbs mimicked several functions of IVIg relevant to suppressing the antiallograft Abs. The mAbs suppressed activated T cells and anti-HLA antibody production by activated B cells, which were dose-wise superior to IVIg. The anti-HLA-E mAb expanded CD4+, CD25+, and Foxp3+ Tregs, which are known to suppress T and B cells involved in antibody production. These defined functions of the anti-HLA-E IgG2a mAbs at a level superior to IVIg encourage developing their humanized version to lower antibodies in allograft recipients, to promote graft survival, and to control autoimmune diseases.


2021 ◽  
Vol 13 (584) ◽  
pp. eaaw9668
Author(s):  
Xin Chen ◽  
Xiaoshan Yang ◽  
Pingyun Yuan ◽  
Ronghua Jin ◽  
Lili Bao ◽  
...  

The therapeutic goal for autoimmune diseases is disease antigen-specific immune tolerance without nonspecific immune suppression. However, it is a challenge to induce antigen-specific immune tolerance in a dysregulated immune system. In this study, we developed immune-homeostatic microparticles (IHMs) that treat multiple mouse models of autoimmunity via induction of apoptosis in activated T cells and reestablishment of regulatory T cells. Specifically, in an experimental model of colitis, IHMs rapidly released monocyte chemotactic protein–1 after intravenous administration, which recruited activated T cells and then induced their apoptosis by conjugated Fas ligand on the IHM surface. This triggered professional macrophages to ingest apoptotic T cells and produce high quantities of transforming growth factor–β, which drove regulatory T cell differentiation. Furthermore, the modular design of IHMs allowed IHMs to be engineered with the autoantigen peptides that can reduce disease in an experimental autoimmune encephalomyelitis mouse model and a nonobese diabetic mouse model. This was accomplished by sustained release of the autoantigens after induction of T cell apoptosis and transforming growth factor–β production by macrophages, which promoted to establish an immune tolerant environment. Thus, IHMs may be an efficient therapeutic strategy for autoimmune diseases through induction of apoptosis and reestablishment of tolerant immune responses.


2017 ◽  
Vol 37 (15) ◽  
Author(s):  
Takuma Suzuki ◽  
Shohei Murakami ◽  
Shyam S. Biswal ◽  
Shimon Sakaguchi ◽  
Hideo Harigae ◽  
...  

ABSTRACT The transcription factor NRF2 (nuclear factor [erythroid-derived 2]-like 2) plays crucial roles in the defense mechanisms against oxidative stress and mediates anti-inflammatory actions under various pathological conditions. Recent studies showed that the dysfunction of regulatory T cells (Tregs) is directly linked to the initiation and progression of various autoimmune diseases. To determine the Treg-independent impact of NRF2 activation on autoimmune inflammation, we examined scurfy (Sf) mice, which are deficient in Tregs and succumb to severe multiorgan inflammation by 4 weeks of age. We found that systemic activation of NRF2 by Keap1 (Kelch-like ECH-associated protein 1) knockdown ameliorated tissue inflammation and lethality in Sf mice. Activated T cells and their cytokine production were accordingly decreased by Keap1 knockdown. In contrast, NRF2 activation through cell lineage-specific Keap1 disruption (i.e., in T cells, myeloid cells, and dendritic cells) achieved only partial or no improvement in the inflammatory status of Sf mice. Our results indicate that systemic activation of NRF2 suppresses effector T cell activities independently of Tregs and that NRF2 activation in multiple cell lineages appears to be required for sufficient anti-inflammatory effects. This study emphasizes the possible therapeutic application of NRF2 inducers in autoimmune diseases that are accompanied by Treg dysfunction.


2019 ◽  
Vol 8 (2) ◽  
pp. 227-237 ◽  
Author(s):  
Alexandra E. Turley ◽  
Joseph W. Zagorski ◽  
Rebekah C. Kennedy ◽  
Robert A. Freeborn ◽  
Jenna K. Bursley ◽  
...  

The purpose of this study was to determine the effect of subchronic, oral, low-dose cadmium exposure (32 ppm over 10 weeks) on the rat immune system. We found that cadmium exposure increased the induction of IFNγ and IL-10 in T cells activated ex vivo after cadmium exposure.


Sign in / Sign up

Export Citation Format

Share Document