DNA barcoding and morphology reveal three cryptic species of Anania (Lepidoptera: Crambidae: Pyraustinae) in North America, all distinct from their European counterpart

2012 ◽  
Vol 37 (4) ◽  
pp. 686-705 ◽  
Author(s):  
ZHAOFU YANG ◽  
JEAN-FRANÇOIS LANDRY ◽  
LOUIS HANDFIELD ◽  
YALIN ZHANG ◽  
M. ALMA SOLIS ◽  
...  
Genome ◽  
2006 ◽  
Vol 49 (7) ◽  
pp. 851-854 ◽  
Author(s):  
Mehrdad Hajibabaei ◽  
Gregory AC Singer ◽  
Donal A Hickey

DNA barcoding has been recently promoted as a method for both assigning specimens to known species and for discovering new and cryptic species. Here we test both the potential and the limitations of DNA barcodes by analysing a group of well-studied organisms—the primates. Our results show that DNA barcodes provide enough information to efficiently identify and delineate primate species, but that they cannot reliably uncover many of the deeper phylogenetic relationships. Our conclusion is that these short DNA sequences do not contain enough information to build reliable molecular phylogenies or define new species, but that they can provide efficient sequence tags for assigning unknown specimens to known species. As such, DNA barcoding provides enormous potential for use in global biodiversity studies.Key words: DNA barcoding, species identification, primate, biodiversity.


Author(s):  
J.P. Wares ◽  
A.E. Castañeda

Identification of the range boundaries and microgeographic distribution of cryptic species is greatly facilitated by the use of genetic markers. Here we characterize the geographic range overlap between two cryptic species, Chthamalus fissus and C. dalli, and show that as with other barnacle species, their distribution and abundance is probably dictated more by microhabitat characteristics and the presence of conspecifics than broader environmental gradients. We also show that C. dalli appears to be panmictic across the studied range.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 669
Author(s):  
Joan Milam ◽  
Dennis E. Johnson ◽  
Jeremy C. Andersen ◽  
Aliza B. Fassler ◽  
Desiree L. Narango ◽  
...  

Despite their large size and striking markings, the identification of bumble bees (Bombus spp.) is surprisingly difficult. This is particularly true for three North American sympatric species in the subgenus Pyrobombus that are often misidentified: B. sandersoni Franklin, B. vagans Smith B. perplexus Cresson. Traditionally, the identification of these cryptic species was based on observations of differences in hair coloration and pattern and qualitative comparisons of morphological characters including malar length. Unfortunately, these characteristics do not reliably separate these species. We present quantitative morphometric methods to separate these species based on the malar length to width ratio (MRL) and the ratios of the malar length to flagellar segments 1 (MR1) and 3 (MR3) for queens and workers, and validated our determinations based on DNA barcoding. All three measurements discriminated queens of B. sandersoni and B. vagans with 100% accuracy. For workers, we achieved 99% accuracy by combining both MR1 and MR3 measurements, and 100% accuracy differentiating workers using MRL. Moreover, measurements were highly repeatable within and among both experienced and inexperienced observers. Our results, validated by genetic evidence, demonstrate that malar measurements provide accurate identifications of B. vagans and B. sandersoni. There was considerable overlap in the measurements between B. perplexus and B. sandersoni. However, these species can usually be reliably separated by combining malar ratio measurements with other morphological features like hair color. The ability to identify bumble bees is key to monitoring the status and trends of their populations, and the methods we present here advance these efforts.


2010 ◽  
Vol 124 (2) ◽  
pp. 181 ◽  
Author(s):  
Chris Lewis

Psilolechia clavulifera is reported as new to Canada, where it was been found growing under a shaded rock overhang near Temagami, Ontario. This is the first record of the species for Canada. This occurrence represents only the fourth documented record of the species for North America since it was first discovered in 1939 by J. Lowe. This specimen was found growing with other rarely collected cryptic species found in unique microhabitats: Psilolechia lucida, Protothelenella corrosa, and Microcalicium arenarium.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Tai Wang ◽  
Yan-ping Zhang ◽  
Zhuo-yu Yang ◽  
Zhe Liu ◽  
Yan-yan Du

Abstract Background The northeastern part of the Qinghai-Tibet Plateau (QTP) presents a high number of plateau loach species. As one of the three major groups of fishes distributed on the QTP, plateau loach has high ecological value. However, the taxonomy and systematics of these fish are still controversial, and a large number of new species have been reported. The reason for this phenomenon is that the degree of morphological variation is low, the phylogenetic information provided by morphological and anatomical features used for species identification is relatively poor, and many cryptic species are observed. Based on the high-density sampling points from the biodiversity hotspots surveyed, this study aims to evaluate the biodiversity of plateau loach in the northeastern part of the QTP and reveal the hidden diversity by comparing morphological species with molecular operational taxonomic units (MOTUs). Results After careful identification and comparison of the morphology and DNA barcoding of 1630 specimens, 22 species were identified, with 20 considered valid local species and two identified as new species that had not been previously described. Based on the combination of morphological and molecular methods, a total of 24 native species were found, two of which were cryptic species: Triplophysa robusta sp1 and Triplophysa minxianensis sp1. Fourteen of the 24 species form clusters of barcodes that allow them to be reliably identified. The remaining cases involved 10 closely related species, including rapidly differentiated species and species that seemed to have experienced incomplete lineage sorting or showed introgressions. Conclusions The results highlight the need to combine traditional taxonomies with molecular methods to correctly identify species, especially closely related species, such as the plateau loach. This study provides a basis for protecting the biodiversity of plateau loach.


2014 ◽  
Vol 104 (7) ◽  
pp. 692-701 ◽  
Author(s):  
Mélanie Rouxel ◽  
Pere Mestre ◽  
Anton Baudoin ◽  
Odile Carisse ◽  
Laurent Delière ◽  
...  

The putative center of origin of Plasmopara viticola, the causal agent of grape downy mildew, is eastern North America, where it has been described on several members of the family Vitaceae (e.g., Vitis spp., Parthenocissus spp., and Ampelopsis spp.). We have completed the first large-scale sampling of P. viticola isolates across a range of wild and cultivated host species distributed throughout the above region. Sequencing results of four partial genes indicated the presence of a new P. viticola species on Vitis vulpina in Virginia, adding to the four cryptic species of P. viticola recently recorded. The phylogenetic analysis also indicated that the P. viticola species found on Parthenocissus quinquefolia in North America is identical to Plasmopara muralis in Europe. The geographic distribution and host range of five pathogen species was determined through analysis of the internal transcribed spacer polymorphism of 896 isolates of P. viticola. Among three P. viticola species found on cultivated grape, one was restricted to Vitis interspecific hybrids within the northern part of eastern North America. A second species was recovered from V. vinifera and V. labrusca, and was distributed across most of the sampled region. A third species, although less abundant, was distributed across a larger geographical range, including the southern part of eastern North America. P. viticola clade aestivalis predominated (83% of isolates) in vineyards of the European winegrape V. vinifera within the sampled area, indicating that a single pathogen species may represent the primary threat to the European host species within eastern North America.


Sign in / Sign up

Export Citation Format

Share Document