scholarly journals Bird species richness patterns of northern Taiwan: primary productivity, human population density, and habitat heterogeneity

2006 ◽  
Vol 12 (5) ◽  
pp. 546-554 ◽  
Author(s):  
Chao-Nien Koh ◽  
Pei-Fen Lee ◽  
Ruey-Shing Lin
2008 ◽  
Vol 2008 ◽  
pp. 1-4 ◽  
Author(s):  
Kyle Barrett ◽  
Christina M. Romagosa ◽  
Matthew I. Williams

Urban areas are expanding globally, and the impact of high human population density (HHPD) on bird species richness remains unresolved. Studies primarily focus on species richness along an urban-to-rural gradient; however, some studies have analyzed larger-scale patterns and found results that contrast with those obtained at smaller scales. To move the discussion beyond static species richness patterns, we analyzed the effect of HHPD on bird assemblage dynamics (year-to-year extinction probability, turnover, changes in species richness) across the United States over a 25-year period. We found that bird assemblages in both high and low human population density areas changed significantly over the period of record. Specifically, bird assemblages increased in species richness on average. Assemblage change in areas of HHPD was not significantly different from assemblage change in areas with LHPD. These results suggest that human population density alone does not alter the persistence of avian assemblage patterns.


Alpine Botany ◽  
2021 ◽  
Author(s):  
Christian Körner ◽  
Davnah Urbach ◽  
Jens Paulsen

AbstractMountains are rugged structures in the landscape that are difficult to delineate. Given that they host an overproportional fraction of biodiversity of high ecological and conservational value, conventions on what is mountainous and what not are in need. This short communication aims at explaining the differences among various popular mountain definitions. Defining mountainous terrain is key for global assessments of plant species richness in mountains and their likely responses to climatic change, as well as for assessing the human population density in and around mountainous terrain.


2014 ◽  
Vol 369 (1643) ◽  
pp. 20130197 ◽  
Author(s):  
Véronique St-Louis ◽  
Anna M. Pidgeon ◽  
Tobias Kuemmerle ◽  
Ruth Sonnenschein ◽  
Volker C. Radeloff ◽  
...  

Applications of remote sensing for biodiversity conservation typically rely on image classifications that do not capture variability within coarse land cover classes. Here, we compare two measures derived from unclassified remotely sensed data, a measure of habitat heterogeneity and a measure of habitat composition, for explaining bird species richness and the spatial distribution of 10 species in a semi-arid landscape of New Mexico. We surveyed bird abundance from 1996 to 1998 at 42 plots located in the McGregor Range of Fort Bliss Army Reserve. Normalized Difference Vegetation Index values of two May 1997 Landsat scenes were the basis for among-pixel habitat heterogeneity (image texture), and we used the raw imagery to decompose each pixel into different habitat components (spectral mixture analysis). We used model averaging to relate measures of avian biodiversity to measures of image texture and spectral mixture analysis fractions. Measures of habitat heterogeneity, particularly angular second moment and standard deviation, provide higher explanatory power for bird species richness and the abundance of most species than measures of habitat composition. Using image texture, alone or in combination with other classified imagery-based approaches, for monitoring statuses and trends in biological diversity can greatly improve conservation efforts and habitat management.


2013 ◽  
Vol 159 ◽  
pp. 137-147 ◽  
Author(s):  
Dian Spear ◽  
Llewellyn C. Foxcroft ◽  
Hugo Bezuidenhout ◽  
Melodie A. McGeoch

Sign in / Sign up

Export Citation Format

Share Document