scholarly journals Cyclic AMP regulation of messenger RNA level of the stimulatory GTP-binding protein Gsalpha. Isoproterenol, forskolin and 8-bromoadenosine 3':5'-cyclic monophosphate increase the level of Gsalpha mRNA in cultured astroglial cells

1994 ◽  
Vol 219 (1-2) ◽  
pp. 529-537 ◽  
Author(s):  
Karim DIB ◽  
Amina JAMALI ◽  
Claude JACQUEMIN ◽  
Claude CORREZE
1986 ◽  
Vol 1 (3) ◽  
pp. 201-209 ◽  
Author(s):  
Nathan Dascal ◽  
Catherine Ifune ◽  
Rosemary Hopkins ◽  
Terry P. Snutch ◽  
Hermann Lübbert ◽  
...  

1988 ◽  
Vol 253 (3) ◽  
pp. 895-899 ◽  
Author(s):  
E A Platts ◽  
D Schulster ◽  
B A Cooke

Luteinizing-hormone (LH)-stimulated cyclic AMP production in rat testis Leydig cells was desensitized by both LH and 12-O-tetradecanoylphorbol 13-acetate (TPA). However, TPA, but not LH, enhanced the subsequent response to cholera toxin. Treatment of the cells with pertussis toxin potentiated cyclic AMP production in both control and LH-desensitized cells, but did not potentiate further the responses obtained by TPA pretreatment. The results implicate the presence of an inhibitory GTP-binding protein (Gi), which may be inhibited by TPA. The presence of a Gi-like protein within the plasma membrane of Leydig cells was demonstrated by pertussis-toxin-catalysed [32P]ADP-ribosylation of a Mr-40000-41000 protein.


1992 ◽  
Vol 288 (1) ◽  
pp. 41-46 ◽  
Author(s):  
C Wesslau ◽  
U Smith

Prenalterol, an allegedly beta 1-selective adrenergic agonist with high intrinsic sympathomimetic activity (ISA), was shown to be weakly lipolytic in rat adipocytes. However, in pertussis-toxin-treated adipocytes, the ISA of prenalterol was markedly increased (from 10-20% to approx. 100% of that of isoprenaline). The cellular sensitivity was also increased (EC50 approx. 60 nM and approx. 3 microM in pertussis-toxin-treated and control cells respectively). A similar effect was seen for other partial agonists such as the beta 2-selective agonist terbutaline and for beta-adrenergic antagonists with some intrinsic activity (metoprolol, pindolol). There was no clear change in sensitivity to isoprenaline's ability to stimulate adenylate cyclase in adipocyte membranes from pertussis-toxin-treated animals but the cyclase activity was increased approx. 4-fold in the presence of 1 microM-GTP. Prenalterol stimulated lipolysis by only small increases in intracellular cyclic AMP (cAMP) levels (less than 10% of that seen with isoprenaline). Basal lipolysis was increased in cells from pertussis-toxin-treated rats and the cellular sensitivity to the non-degradable cAMP analogue, N6-monobutyryl-cAMP, was increased. In control cells, a submaximal concentration of prenalterol (0.1 microM) increased the sensitivity to the cAMP analogues, N6-monobutyryl-cAMP and 8-bromo-cAMP. A low concentration (1 mM) of 8-bromo-cAMP also increased the effect of prenalterol. Similar effects were seen when the phosphodiesterase was inhibited. Thus (1) lipolysis is extremely sensitive to small increases in intracellular cAMP; (2) the degree of activation of adenylate cyclase and thus cAMP formation is the rate-limiting step for the biological response of partial agonists; (3) the inhibitory GTP-binding protein, Gi, is an important modulator (‘tissue factor’) of the beta-adrenergic agonistic property; (4) low levels of cAMP exert a priming effect on protein kinase A.


1988 ◽  
Vol 253 (3) ◽  
pp. 711-719 ◽  
Author(s):  
I Magnaldo ◽  
J Pouysségur ◽  
S Paris

Previous studies in Chinese-hamster fibroblasts (CCL39 line) indicate that an important signalling pathway involved in thrombin's mitogenicity is the activation of a phosphoinositide-specific phospholipase C, mediated by a pertussis-toxin-sensitive GTP-binding protein (Gp). The present studies examine the effects of thrombin on the adenylate cyclase system and the interactions between the two signal transduction pathways. We report that thrombin exerts two opposite effects on cyclic AMP accumulation stimulated by cholera toxin, forskolin or prostaglandin E1. (1) Low thrombin concentrations (below 0.1 nM) decrease cyclic AMP formation. A similar inhibition is induced by A1F4-, and both thrombin- and A1F4- –induced inhibitions are abolished by pertussis toxin. (2) Increasing thrombin concentration from 0.1 to 10 nM results in a progressive suppression of adenylate cyclase inhibition and in a marked enhancement of cyclic AMP formation in pertussis-toxin-treated cells. A similar stimulation is induced by an active phorbol ester, and thrombin-induced potentiation of adenylate cyclase is suppressed by down-regulation of protein kinase C. Therefore, we conclude that (1) the inhibitory effect of thrombin on adenylate cyclase is the direct consequence of the activation of a pertussis-toxin-sensitive inhibitory GTP-binding protein (Gi) possibly identical with Gp, and (2) the potentiating effect of thrombin on cyclic AMP formation is due to stimulation of protein kinase C, as an indirect consequence of Gp activation. Our results suggest that the target of protein kinase C is an element of the adenylate cyclase-stimulatory GTP-binding protein (Gs) complex. At low thrombin concentrations, activation of phospholipase C is greatly attenuated by increased cyclic AMP, leading to predominance of the Gi-mediated inhibition.


1999 ◽  
Vol 82 (09) ◽  
pp. 1177-1181 ◽  
Author(s):  
Hubert de Leeuw ◽  
Pauline Wijers-Koster ◽  
Jan van Mourik ◽  
Jan Voorberg

SummaryIn endothelial cells von Willebrand factor (vWF) and P-selectin are stored in dense granules, so-called Weibel-Palade bodies. Upon stimulation of endothelial cells with a variety of agents including thrombin, these organelles fuse with the plasma membrane and release their content. Small GTP-binding proteins have been shown to control release from intracellular storage pools in a number of cells. In this study we have investigated whether small GTP-binding proteins are associated with Weibel-Palade bodies. We isolated Weibel-Palade bodies by centrifugation on two consecutive density gradients of Percoll. The dense fraction in which these subcellular organelles were highly enriched, was analysed by SDS-PAGE followed by GTP overlay. A distinct band with an apparent molecular weight of 28,000 was observed. Two-dimensional gel electrophoresis followed by GTP overlay revealed the presence of a single small GTP-binding protein with an isoelectric point of 7.1. A monoclonal antibody directed against RalA showed reactivity with the small GTP-binding protein present in subcellular fractions that contain Weibel-Palade bodies. The small GTPase RalA was previously identified on dense granules of platelets and on synaptic vesicles in nerve terminals. Our observations suggest that RalA serves a role in regulated exocytosis of Weibel-Palade bodies in endothelial cells.


1998 ◽  
Vol 79 (04) ◽  
pp. 832-836 ◽  
Author(s):  
Thomas Fischer ◽  
Christina Duffy ◽  
Gilbert White

SummaryPlatelet membrane glycoproteins (GP) IIb/IIIa and rap1b, a 21 kDa GTP binding protein, associate with the triton-insoluble, activation-dependent platelet cytoskeleton with similar rates and divalent cation requirement. To examine the possibility that GPIIb/IIIa was required for rap1b association with the cytoskeleton, experiments were performed to determine if the two proteins were linked under various conditions. Chromatography of lysates from resting platelets on Sephacryl S-300 showed that GPIIb/IIIa and rap1b were well separated and distinct proteins. Immunoprecipitation of GPIIb/IIIa from lysates of resting platelets did not produce rap1b or other low molecular weight GTP binding proteins and immunoprecipitation of rap1b from lysates of resting platelets did not produce GPIIb/IIIa. Finally, rap1b was associated with the activation-dependent cytoskeleton of platelets from a patient with Glanzmann’s thrombasthenia who lacks surface expressed glycoproteins IIb and IIIa. Based on these findings, we conclude that no association between GPIIb/IIIa and rap1b is found in resting platelets and that rap1b association with the activation-dependent cytoskeleton is at least partly independent of GPIIb/IIIa.


Sign in / Sign up

Export Citation Format

Share Document