Inheritance of resistance to Fusarium head blight in the wheat lines 'CJ 9306' and 'CJ 9403'

2006 ◽  
Vol 125 (5) ◽  
pp. 417-423 ◽  
Author(s):  
G.-L. Jiang ◽  
R. W. Ward
2020 ◽  
Vol 13 (1) ◽  
pp. 26
Author(s):  
Wen-Hao Su ◽  
Jiajing Zhang ◽  
Ce Yang ◽  
Rae Page ◽  
Tamas Szinyei ◽  
...  

In many regions of the world, wheat is vulnerable to severe yield and quality losses from the fungus disease of Fusarium head blight (FHB). The development of resistant cultivars is one means of ameliorating the devastating effects of this disease, but the breeding process requires the evaluation of hundreds of lines each year for reaction to the disease. These field evaluations are laborious, expensive, time-consuming, and are prone to rater error. A phenotyping cart that can quickly capture images of the spikes of wheat lines and their level of FHB infection would greatly benefit wheat breeding programs. In this study, mask region convolutional neural network (Mask-RCNN) allowed for reliable identification of the symptom location and the disease severity of wheat spikes. Within a wheat line planted in the field, color images of individual wheat spikes and their corresponding diseased areas were labeled and segmented into sub-images. Images with annotated spikes and sub-images of individual spikes with labeled diseased areas were used as ground truth data to train Mask-RCNN models for automatic image segmentation of wheat spikes and FHB diseased areas, respectively. The feature pyramid network (FPN) based on ResNet-101 network was used as the backbone of Mask-RCNN for constructing the feature pyramid and extracting features. After generating mask images of wheat spikes from full-size images, Mask-RCNN was performed to predict diseased areas on each individual spike. This protocol enabled the rapid recognition of wheat spikes and diseased areas with the detection rates of 77.76% and 98.81%, respectively. The prediction accuracy of 77.19% was achieved by calculating the ratio of the wheat FHB severity value of prediction over ground truth. This study demonstrates the feasibility of rapidly determining levels of FHB in wheat spikes, which will greatly facilitate the breeding of resistant cultivars.


2005 ◽  
Vol 18 (12) ◽  
pp. 1318-1324 ◽  
Author(s):  
Marc Lemmens ◽  
Uwe Scholz ◽  
Franz Berthiller ◽  
Chiara Dall'Asta ◽  
Andrea Koutnik ◽  
...  

We investigated the hypothesis that resistance to deoxynivalenol (DON) is a major resistance factor in the Fusarium head blight (FHB) resistance complex of wheat. Ninety-six double haploid lines from a cross between ‘CM-82036’ and ‘Remus’ were examined. The lines were tested for DON resistance after application of the toxin in the ear, and for resistances to initial infection and spread of FHB after artificial inoculation with Fusarium spp. Toxin application to flowering ears induced typical FHB symptoms. Quantitative trait locus (QTL) analyses detected one locus with a major effect on DON resistance (logarithm of odds = 53.1, R2 = 92.6). The DON resistance phenotype was closely associated with an important FHB resistance QTL, Qfhs.ndsu-3BS, which previously was identified as governing resistance to spread of symptoms in the ear. Resistance to the toxin was correlated with resistance to spread of FHB (r = 0.74, P < 0.001). In resistant wheat lines, the applied toxin was converted to DON-3-O-glucoside as the detoxification product. There was a close relation between the DON-3-glucoside/DON ratio and DON resistance in the toxintreated ears (R2 = 0.84). We conclude that resistance to DON is important in the FHB resistance complex and hypothesize that Qfhs.ndsu-3BS either encodes a DON-glucosyltransferase or regulates the expression of such an enzyme.


Author(s):  
Evgeniy Dimitrov ◽  
◽  
Zlatina Peycheva Uhr ◽  
Blagoy Andonov ◽  
Nikolaya Velcheva ◽  
...  

2020 ◽  
Vol 71 (16) ◽  
pp. 4703-4714 ◽  
Author(s):  
Benjamin Hales ◽  
Andrew Steed ◽  
Vincenzo Giovannelli ◽  
Christopher Burt ◽  
Marc Lemmens ◽  
...  

Abstract Fusarium head blight (FHB) causes significant grain yield and quality reductions in wheat and barley. Most wheat varieties are incapable of preventing FHB spread through the rachis, but disease is typically limited to individually infected spikelets in barley. We point-inoculated wheat lines possessing barley chromosome introgressions to test whether FHB resistance could be observed in a wheat genetic background. The most striking differential was between 4H(4D) substitution and 4H addition lines. The 4H addition line was similarly susceptible to the wheat parent, but the 4H(4D) substitution line was highly resistant, which suggests that there is an FHB susceptibility factor on wheat chromosome 4D. Point inoculation of Chinese Spring 4D ditelosomic lines demonstrated that removing 4DS results in high FHB resistance. We genotyped four Chinese Spring 4DS terminal deletion lines to better characterize the deletions in each line. FHB phenotyping indicated that lines del4DS-2 and del4DS-4, containing smaller deletions, were susceptible and had retained the susceptibility factor. Lines del4DS-3 and del4DS-1 contain larger deletions and were both significantly more resistant, and hence had presumably lost the susceptibility factor. Combining the genotyping and phenotyping results allowed us to refine the susceptibility factor to a 31.7 Mbp interval on 4DS.


2004 ◽  
Vol 57 ◽  
pp. 108-115
Author(s):  
M.G. Cromey ◽  
S.C. Shorter ◽  
W.B. Griffin ◽  
C.A. Munro ◽  
D.R. Lauren

Components of Fusarium head blight (FHB) caused by Fusarium spp were examined in one Chinese and seven New Zealand wheat cultivars and in 141 doubled haploid lines from a cross between a susceptible and a moderately resistant cultivar Components measured were incidence of FHB proportions of grains with visible FHB infection mycotoxins levels in grain and proportion of grains infected with Fusarium Lines were sown in a field trial that was inoculated with F graminearum and mist irrigated to enhance infection The Chinese cultivar Nanjing had the lowest level of FHB in ears and visibly infected grains and Fusarium infection in harvested grain Two New Zealand cultivars also had low levels of FHB components while two other cultivars had medium levels and three had high levels of infection There were moderate to good correlations between most components of FHB except that the proportions of visibly infected grains were poorly correlated with other components


2005 ◽  
Vol 33 (2-3) ◽  
pp. 583-588 ◽  
Author(s):  
S. Tomasović ◽  
B. Palaveršić ◽  
I. Ikić

2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 580-582 ◽  
Author(s):  
A. Steed ◽  
E. Chandler ◽  
M. Thomsett ◽  
J. Carter ◽  
S. Faure ◽  
...  

Chromosome 4A of Triticum macha carries resistance to Fusarium head blight (FHB). Double haploid lines (DH) of T. macha 4A were used to determine the type of resistance and location of the gene(s). FHB resistance and yield trait data collected over two seasons following spray and point inoculation, indicate that the resistance is of type I and is probably conferred by a single gene. The resistance was mapped with microsatellite markers to a small area of the T. macha 4A chromosome flanked by markers gwm 610 and gwm 165. This could greatly facilitate future marker assisted selection work aimed at increasing resistance to FHB in other winter wheat lines.


Sign in / Sign up

Export Citation Format

Share Document