scholarly journals Characterisation of fusarium head blight resistance located on chromosome 4A of Triticum macha

2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 580-582 ◽  
Author(s):  
A. Steed ◽  
E. Chandler ◽  
M. Thomsett ◽  
J. Carter ◽  
S. Faure ◽  
...  

Chromosome 4A of Triticum macha carries resistance to Fusarium head blight (FHB). Double haploid lines (DH) of T. macha 4A were used to determine the type of resistance and location of the gene(s). FHB resistance and yield trait data collected over two seasons following spray and point inoculation, indicate that the resistance is of type I and is probably conferred by a single gene. The resistance was mapped with microsatellite markers to a small area of the T. macha 4A chromosome flanked by markers gwm 610 and gwm 165. This could greatly facilitate future marker assisted selection work aimed at increasing resistance to FHB in other winter wheat lines.

2005 ◽  
Vol 18 (12) ◽  
pp. 1318-1324 ◽  
Author(s):  
Marc Lemmens ◽  
Uwe Scholz ◽  
Franz Berthiller ◽  
Chiara Dall'Asta ◽  
Andrea Koutnik ◽  
...  

We investigated the hypothesis that resistance to deoxynivalenol (DON) is a major resistance factor in the Fusarium head blight (FHB) resistance complex of wheat. Ninety-six double haploid lines from a cross between ‘CM-82036’ and ‘Remus’ were examined. The lines were tested for DON resistance after application of the toxin in the ear, and for resistances to initial infection and spread of FHB after artificial inoculation with Fusarium spp. Toxin application to flowering ears induced typical FHB symptoms. Quantitative trait locus (QTL) analyses detected one locus with a major effect on DON resistance (logarithm of odds = 53.1, R2 = 92.6). The DON resistance phenotype was closely associated with an important FHB resistance QTL, Qfhs.ndsu-3BS, which previously was identified as governing resistance to spread of symptoms in the ear. Resistance to the toxin was correlated with resistance to spread of FHB (r = 0.74, P < 0.001). In resistant wheat lines, the applied toxin was converted to DON-3-O-glucoside as the detoxification product. There was a close relation between the DON-3-glucoside/DON ratio and DON resistance in the toxintreated ears (R2 = 0.84). We conclude that resistance to DON is important in the FHB resistance complex and hypothesize that Qfhs.ndsu-3BS either encodes a DON-glucosyltransferase or regulates the expression of such an enzyme.


2020 ◽  
Vol 100 (2) ◽  
pp. 156-174
Author(s):  
S. Berraies ◽  
R.E. Knox ◽  
R.M. DePauw ◽  
F.R. Clarke ◽  
A.R. Martin ◽  
...  

Several quantitative trait loci (QTL) have been identified for Fusarium head blight (FHB) resistance in the cultivar Sumai 3. Wheat breeders need to know which Sumai 3 loci are present in derived lines used as parents for effective marker-assisted selection for genetic improvement. This study was conducted to identify the loci in Sumai 3 derived parents that contribute FHB resistance in breeding populations. Three doubled haploid (DH) populations utilizing Sumai 3 derived parents, ND3085, ND744, and Alsen, were evaluated during 2007 and 2008 in FHB nurseries near Carman, MB, Ottawa, ON and Charlottetown, PE. The percentage of incidence, severity, Fusarium-damaged kernels (FDK), and deoxynivalenol (DON) accumulation were measured, and FHB index calculated. DNA markers at six FHB resistance loci detected in Sumai 3 were evaluated on the populations. For each trait, a t test was applied to means of observations pooled by parental type of each marker to determine which loci contributed to resistance. The alleles at 3BS and 5AS most frequently contributed to Type I and Type II FHB resistance, as well as to reduced FDK and DON in all three populations. Markers revealed resistance on 3BS and 5AS in Alsen, ND3085, and ND744, on 3BSc, 4D, and 6BS in ND744, on 4D in ND3085, and on 6BS in Alsen. In some environments, the susceptible parent Infinity contributed minor QTL on 2D, 3BSc, and 6BS. Likewise, Helios contributed minor QTL on 5AS and 6BS.


2021 ◽  
Author(s):  
Xianrui Guo ◽  
Qinghua Shi ◽  
Jing Yuan ◽  
Mian Wang ◽  
Jing Wang ◽  
...  

AbstractFusarium head blight (FHB), caused by Fusarium species, seriously threaten global wheat production. Three wheat-Th.elongatum FHB resistant translocation lines have been developed and used for breeding. Transcriptomic analysis identified a derivative glutathione S-transferase transcript T26102, which was homologous to Fhb7 and induced dramatically by Fusarium graminearum. Homologs of Fhb7 were detected in several genera in Triticeae, including Thinopyrum, Elymus, Leymus, Pseudoroegeria and Roegeria. Several wheat-Thinopyrum translocation lines carrying Fhb7 remain susceptible to FHB, and transgenic plants overexpressing the T26102 on different backgrounds did not improve the FHB resistance. Taken as a whole, we show the application of the chromatin derived from diploid Thinopyrum elongatum successfully conferring wheat with high level FHB resistance independent of the Fhb7.One Sentence SummaryThinopyrum elongatum chromatin from 7EL was successfully applied to wheat FHB resistance breeding, but the resistant gene other than the reported Fhb7 remained unknown.


Pathogens ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 58 ◽  
Author(s):  
Moustafa Eldakak ◽  
Aayudh Das ◽  
Yongbin Zhuang ◽  
Jai Rohila ◽  
Karl Glover ◽  
...  

Fusarium head blight (FHB) is a highly detrimental disease of wheat. A quantitative trait locus for FHB resistance, Qfhb1, is the most utilized source of resistance in wheat-breeding programs, but very little is known about its resistance mechanism. In this study, we elucidated a prospective FHB resistance mechanism by investigating the proteomic signatures of Qfhb1 in a pair of contrasting wheat near-isogenic lines (NIL) after 24 h of inoculation of wheat florets by Fusarium graminearum. Statistical comparisons of the abundances of protein spots on the 2D-DIGE gels of contrasting NILs (fhb1+ NIL = Qfhb1 present; fhb1- NIL = Qfhb1 absent) enabled us to select 80 high-ranking differentially accumulated protein (DAP) spots. An additional evaluation confirmed that the DAP spots were specific to the spikelet from fhb1- NIL (50 spots), and fhb1+ NIL (seven spots). The proteomic data also suggest that the absence of Qfhb1 makes the fhb1- NIL vulnerable to Fusarium attack by constitutively impairing several mechanisms including sucrose homeostasis by enhancing starch synthesis from sucrose. In the absence of Qfhb1, Fusarium inoculations severely damaged photosynthetic machinery; altered the metabolism of carbohydrates, nitrogen and phenylpropanoids; disrupted the balance of proton gradients across relevant membranes; disturbed the homeostasis of many important signaling molecules induced the mobility of cellular repair; and reduced translational activities. These changes in the fhb1- NIL led to strong defense responses centered on the hypersensitive response (HSR), resulting in infected cells suicide and the consequent initiation of FHB development. Therefore, the results of this study suggest that Qfhb1 largely functions to either alleviate HSR or to manipulate the host cells to not respond to Fusarium infection.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jitendra Kumar ◽  
Krishan M. Rai ◽  
Seyedmostafa Pirseyedi ◽  
Elias M. Elias ◽  
Steven Xu ◽  
...  

Abstract Eight advanced durum-breeding lines were treated with 5-methyl-azacytidine to test the feasibility of generating sources of Fusarium head blight (FHB) resistance. Of the 800 treated seeds, 415 germinated and were advanced up to four (M4) generations by selfing. Thirty-two of the resulting 415 M4 lines were selected following preliminary screening and were further tested for FHB resistance for three years at two field locations, and in the greenhouse. Five of the 32 M4 lines showed less than 30% disease severity, as compared to the parental lines and susceptible checks. Fusarium-damaged kernels and deoxynivalenol analyses supported the findings of the field and greenhouse disease assessments. Two of the most resistant M4 lines were crossed to a susceptible parent, advanced to third generation (BC1:F3) and were tested for stability and inheritance of the resistance. About, one third of the BC1:F3 lines showed FHB resistance similar to their M4 parents. The overall methylation levels (%) were compared using FASTmC method, which did not show a significant difference between M4 and parental lines. However, transcriptome analysis of one M4 line revealed significant number of differentially expressed genes related to biosynthesis of secondary metabolites, MAPK signaling, photosynthesis, starch and sucrose metabolism, plant hormone signal transduction and plant-pathogen interaction pathways, which may have helped in improved FHB resistance.


2020 ◽  
pp. PHYTO-05-20-017
Author(s):  
Mingming Yang ◽  
Xianguo Wang ◽  
Jian Dong ◽  
Wanchun Zhao ◽  
Tariq Alam ◽  
...  

Fusarium head blight (FHB) is a devastating disease of wheat, causing yield losses and quality reduction as a result of mycotoxin production. In this study, iTRAQ (isobaric tags for relative and absolute quantification)- labeling-based mass spectrometry was employed to characterize the proteome in wheat cultivars Xinong 538 and Zhoumai 18 with contrasting levels of FHB resistance as a means to elucidate the molecular mechanisms contributing to FHB resistance. A total of 13,669 proteins were identified in the two cultivars 48 h after Fusarium graminearum inoculation. Among these, 2,505 unique proteins exclusively accumulated in Xinong 538 (resistant) and 887 proteins in Zhoumai 18 (susceptible). Gene Ontology enrichment analysis showed that most differentially accumulated proteins (DAPs) from both cultivars were assigned to the following categories: metabolic process, single-organism process, cellular process, and response to stimulus. Kyoto Encyclopedia of Genes and Genomes analysis showed that a greater number of proteins belonging to different metabolic pathways were identified in Xinong 538 compared with Zhoumai 18. Specifically, DAPs from the FHB-resistant cultivar Xinong 538 populated categories of metabolic pathways related to plant–pathogen interaction. These DAPs might play a critical role in defense responses exhibited by Xinong 538. DAPs from both genotypes were assigned to all wheat chromosomes except chromosome 6B, with approximately 30% mapping to wheat chromosomes 2B, 3B, 5B, and 5D. Twenty single nucleotide polymorphism markers, flanking DAPs on chromosomes 1B, 3B, 5B, and 6A, overlapped with the location of earlier mapped FHB-resistance quantitative trait loci. The data provide evidence for the involvement of several DAPs in the early stages of the FHB-resistance response in wheat; however, further functional characterization of candidate proteins is warranted.


2015 ◽  
Vol 95 (5) ◽  
pp. 923-929 ◽  
Author(s):  
Xinyao He ◽  
Mohamed Osman ◽  
James Helm ◽  
Flavio Capettini ◽  
Pawan K. Singh

He, X., Osman, M., Helm, J., Capettini, F. and Singh, P. K. 2015. Evaluation of Canadian barley breeding lines for Fusarium head blight resistance. Can. J. Plant Sci. 95: 923–929. Fusarium head blight (FHB) is a major challenge to the successful production of barley in Canada, as well as for end-users such as the malting and brewing industries. Due to the quantitative inheritance of FHB resistance, continuous effort is required to identify breeding lines with improved FHB resistance and incorporate them into crossing schemes to enhance FHB resistance. In the present study, 402 advanced breeding lines from Alberta, Canada, were evaluated in the FHB screening nursery at CIMMYT, Mexico. In 2011 and 2012, FHB incidence was measured on a scale of 1 to 4 to eliminate the most susceptible lines. In 2013 and 2014, 181 lines with the lowest disease scores in the previous 2 yr were tested in replicated experiments for field FHB index, Fusarium-damaged kernels, and deoxynivalenol content. Agronomic and morphological traits, specifically days to heading, plant height, and row and hull types were also evaluated in relations to FHB parameters. Correlation coefficients among the three FHB parameters in both 2013 and 2014 were all significant at P<0.0001, ranging from 0.36 to 0.63. Additional correlation analysis showed that late-maturing, tall, and two-row lines tended to have lower disease, whereas hull type did not show a significant correlation with FHB. Several lines with high and stable FHB resistance similar to that of the resistant checks were identified. These could be used in breeding programs as resistance sources or be registered as new cultivars if their overall attributes meet commercial standards.


Sign in / Sign up

Export Citation Format

Share Document