scholarly journals Evolutionary Conservation of the Larval Serotonergic Nervous System in a Direct Developing Sea Urchin. (sea urchin development/larval nervous systems/heterochrony/direct development/Heliocidaris erythrogramma)

1989 ◽  
Vol 31 (4) ◽  
pp. 363-370 ◽  
Author(s):  
Brent W. Bisgrove ◽  
Rudolf A. Raff
1983 ◽  
Vol 96 (5) ◽  
pp. 1337-1354 ◽  
Author(s):  
P De Camilli ◽  
R Cameron ◽  
P Greengard

Synapsin I (formerly referred to as protein I) is the collective name for two almost identical phosphoproteins, synapsin Ia and synapsin Ib (protein Ia and protein Ib), present in the nervous system. Synapsin I has previously been shown by immunoperoxidase studies (De Camilli, P., T. Ueda, F. E. Bloom, E. Battenberg, and P. Greengard, 1979, Proc. Natl. Acad. Sci. USA, 76:5977-5981; Bloom, F. E., T. Ueda, E. Battenberg, and P. Greengard, 1979, Proc. Natl. Acad. Sci. USA 76:5982-5986) to be a neuron-specific protein, present in both the central and peripheral nervous systems and concentrated in the synaptic region of nerve cells. In those preliminary studies, the occurrence of synapsin I could be demonstrated in only a portion of synapses. We have now carried out a detailed examination of the distribution of synapsin I immunoreactivity in the central and peripheral nervous systems. In this study we have attempted to maximize the level of resolution of immunohistochemical light microscopy images in order to estimate the proportion of immunoreactive synapses and to establish their precise distribution. Optimal results were obtained by the use of immunofluorescence in semithin sections (approximately 1 micron) prepared from Epon-embedded nonosmicated tissues after the Epon had been removed. Our results confirm the previous observations on the specific localization of synapsin I in nerve cells and synapses. In addition, the results strongly suggest that, with a few possible exceptions involving highly specialized neurons, all synapses contain synapsin I. Finally, immunocytochemical experiments indicate that synapsin I appearance in the various regions of the developing nervous system correlates topographically and temporally with the appearance of synapses. In two accompanying papers (De Camilli, P., S. M. Harris, Jr., W. B. Huttner, and P. Greengard, and Huttner, W. B., W. Schiebler, P. Greengard, and P. De Camilli, 1983, J. Cell Biol. 96:1355-1373 and 1374-1388, respectively), evidence is presented that synapsin I is specifically associated with synaptic vesicles in nerve endings.


2002 ◽  
Vol 13 (2) ◽  
pp. 698-710 ◽  
Author(s):  
Sylvie Ozon ◽  
Antoine Guichet ◽  
Olivier Gavet ◽  
Siegfried Roth ◽  
André Sobel

Stathmin is a ubiquitous regulatory phosphoprotein, the generic element of a family of neural phosphoproteins in vertebrates that possess the capacity to bind tubulin and interfere with microtubule dynamics. Although stathmin and the other proteins of the family have been associated with numerous cell regulations, their biological roles remain elusive, as in particular inactivation of the stathmin gene in the mouse resulted in no clear deleterious phenotype. We identified stathmin phosphoproteins inDrosophila, encoded by a unique gene sharing the intron/exon structure of the vertebrate stathmin andstathmin family genes. They interfere with microtubule assembly in vitro, and in vivo when expressed in HeLa cells. Drosophila stathmin expression is regulated during embryogenesis: it is high in the migrating germ cells and in the central and peripheral nervous systems, a pattern resembling that of mammalian stathmin. Furthermore, RNA interference inactivation ofDrosophila stathmin expression resulted in germ cell migration arrest at stage 14. It also induced important anomalies in nervous system development, such as loss of commissures and longitudinal connectives in the ventral cord, or abnormal chordotonal neuron organization. In conclusion, a single Drosophilagene encodes phosphoproteins homologous to the entire vertebrate stathmin family. We demonstrate for the first time their direct involvement in major biological processes such as development of the reproductive and nervous systems.


2018 ◽  
Vol 1 ◽  
Author(s):  
Sebastian Markett ◽  
Christian Montag ◽  
Martin Reuter

AbstractPersonality and individual differences originate from the brain. Despite major advances in the affective and cognitive neurosciences, however, it is still not well understood how personality and single personality traits are represented within the brain. Most research on brain-personality correlates has focused either on morphological aspects of the brain such as increases or decreases in local gray matter volume, or has investigated how personality traits can account for individual differences in activation differences in various tasks. Here, we propose that personality neuroscience can be advanced by adding a network perspective on brain structure and function, an endeavor that we label personality network neuroscience.With the rise of resting-state functional magnetic resonance imaging (MRI), the establishment of connectomics as a theoretical framework for structural and functional connectivity modeling, and recent advancements in the application of mathematical graph theory to brain connectivity data, several new tools and techniques are readily available to be applied in personality neuroscience. The present contribution introduces these concepts, reviews recent progress in their application to the study of individual differences, and explores their potential to advance our understanding of the neural implementation of personality.Trait theorists have long argued that personality traits are biophysical entities that are not mere abstractions of and metaphors for human behavior. Traits are thought to actually exist in the brain, presumably in the form of conceptual nervous systems. A conceptual nervous system refers to the attempt to describe parts of the central nervous system in functional terms with relevance to psychology and behavior. We contend that personality network neuroscience can characterize these conceptual nervous systems on a functional and anatomical level and has the potential do link dispositional neural correlates to actual behavior.


Author(s):  
Dale Purves

Although understanding neural functions has progressed at a remarkable pace in recent decades, a fundamental question remains: How does the nervous system relate the objective world to the subjective domain of perception? Everyday experience implies that the neural connections on which we and other animals depend link physical parameters in the environment with useful responses. But that interpretation won't work: biological sensory systems cannot measure the physical world. Whereas something is linking sensory inputs to useful responses, it is not the physical world that instruments measure. How, then, have we animals met this challenge, and what is it that we end up perceiving? The purpose of this chapter is to suggest how nervous systems have evolved to deal with the inability to convey the objective properties of the real world.


Author(s):  
Dale Purves

Definitions of the term “animals” in dictionaries and textbooks are surprisingly vague. The characteristics usually mentioned are eukaryotic, multicellular, heterotrophic, sexually reproducing, and capable of rapid and independent movement. But some or all of these properties are characteristic of many organisms in the other kingdoms of life on Earth. In fact, the major distinguishing feature of animals in most cases is the presence of a nervous system. But if nervous systems are indeed one of the main attributes that distinguish organisms in the animal kingdom, what exactly are nervous systems and what advantages do they bring? Without at least some provisional answers, seeking the operating principle of neural systems would be futile.


2018 ◽  
Vol 9 ◽  
Author(s):  
Natalie J. Wood ◽  
Teresa Mattiello ◽  
Matthew L. Rowe ◽  
Lizzy Ward ◽  
Margherita Perillo ◽  
...  

2015 ◽  
Vol 370 (1684) ◽  
pp. 20150181 ◽  
Author(s):  
Gáspár Jékely ◽  
Fred Keijzer ◽  
Peter Godfrey-Smith

The origin of nervous systems has traditionally been discussed within two conceptual frameworks. Input–output models stress the sensory-motor aspects of nervous systems, while internal coordination models emphasize the role of nervous systems in coordinating multicellular activity, especially muscle-based motility. Here we consider both frameworks and apply them to describe aspects of each of three main groups of phenomena that nervous systems control: behaviour, physiology and development. We argue that both frameworks and all three aspects of nervous system function need to be considered for a comprehensive discussion of nervous system origins. This broad mapping of the option space enables an overview of the many influences and constraints that may have played a role in the evolution of the first nervous systems.


1993 ◽  
Vol 67 (3) ◽  
pp. 189-199 ◽  
Author(s):  
C. A. Magee ◽  
M. Cahir ◽  
D. W. Halton ◽  
C. F. Johnston ◽  
C. Shaw

AbstractAdult Corrigia vitta (Trematoda: Dicrocoelidea) inhabit the pancreatic duct of the fieldmouse, Apodemus sylvaticus, where, in numbers, they may occlude the duct lumen and prevent the flow of pancreatic secretions. Enzyme histochemical and immunocytochemical techniques, in conjunction with confocal scanning laser microscopy, have been used to examine the localization and distribution of cholinergic. serotoninergic (5-HT, serotonin) and peptidergic components of the nervous system of the adult worm. All three classes of neuronal mediator showed a common pattern of staining, occurring throughout the central and peripheral nervous systems. Of the four peptide immunoreactivities (IR) demonstrated (pancreatic polypeptide (PP), peptide YY (PYY), substance P (SP), FMRFamide), PP-IR was the most predominant, occurring not only within the central ganglia and longitudinal nerve cords, but also in subtegumental plexuses and in fibres associated with the egg-forming apparatus. PYY and FMRFamide IRs were evident throughout the central and peripheral nervous systems; FMRFamide immunostaining, in particular, highlighted innervation of the ootype and immunoreactive cell bodies around the Mehlis' gland. Both SP- and 5-HT-IRs were restricted to the cerebral ganglia, ventral nerve cords and associated cell bodies. The distribution pattems of these peptides and 5-HT within the nervous system of C. vitta suggest they are likely to function as neuronal mediators. PP, PYY and FMRFamide may also serve in regulating egg production.


Sign in / Sign up

Export Citation Format

Share Document