Determination of structural stress for fatigue analysis of welded aluminium components subjected to bending

2005 ◽  
Vol 28 (9) ◽  
pp. 835-844 ◽  
Author(s):  
T. MATIC ◽  
Z. DOMAZET
2021 ◽  
Author(s):  
Anthony Muff ◽  
Anders Wormsen ◽  
Torfinn Hørte ◽  
Arne Fjeldstad ◽  
Per Osen ◽  
...  

Abstract Guidance for determining a S-N based fatigue capacity (safe life design) for preloaded connectors is included in Section 5.4 of the 2019 edition of DNVGL-RP-C203 (C203-2019). This section includes guidance on the finite element model representation, finite element based fatigue analysis and determination of the connector design fatigue capacity by use of one of the following methods: Method 1 by FEA based fatigue analysis, Method 2 by FEA based fatigue analysis and experimental testing and Method 3 by full-scale connector fatigue testing. The FEA based fatigue analysis makes use of Appendix D.2 in C203-2019 (“S-N curves for high strength steel applications for subsea”). Practical use of Section 5.4 is illustrated with a case study of a fatigue tested wellhead profile connector segment test. Further developments of Section 5.4 of C203-2019 are proposed. This included acceptance criteria for use of a segment test to validate the FEA based fatigue analysis of a full-scale preloaded connector.


Author(s):  
Gürkan İrsel

In this study, the total algorithm of the strength-based design of the system for mass production has been developed. The proposed algorithm, which includes numerical, analytical, and experimental studies, was implemented through a case study on the strength-based structural design and fatigue analysis of a tractor-mounted sunflower stalk cutting machine (SSCM). The proposed algorithm consists of a systematic engineering approach, material selection and testing, design of the mass criteria suitability, structural stress analysis, computer-aided engineering (CAE), prototype production, experimental validation studies, fatigue calculation based on an FE model and experimental studies (CAE-based fatigue analysis), and an optimization process aimed at minimum weight. Approximately 85% of the system was designed using standard commercially available cross-section beams and elements using the proposed algorithm. The prototype was produced, and an HBM data acquisition system was used to collect the strain gage output. The prototype produced was successful in terms of functionality. Two- and three-dimensional mixed models were used in the structural analysis solution. The structural stress analysis and experimental results with a strain gage were 94.48% compatible in this study. It was determined using nCode DesignLife software that fatigue damage did not occur in the system using the finite element analysis (FEA) and experimental data. The SSCM design adopted a multi-objective genetic algorithm (MOGA) methodology for optimization with ANSYS. With the optimization solved from 422 iterations, a maximum stress value of 57.65 MPa was determined, and a 97.72 kg material was saved compared to the prototype. This study provides a useful methodology for experimental and advanced CAE techniques, especially for further study on complex stress, strain, and fatigue analysis of new systematic designs desired to have an optimum weight to strength ratio.


2018 ◽  
Vol 165 ◽  
pp. 10003
Author(s):  
Ralf Trieglaff ◽  
Jürgen Rudolph ◽  
Martin Beckert ◽  
Daniel Friers

The European Pressure Vessel Standard EN 13445 provides in its part 3 (Design) a simplified method (Clause 17) and a detailed method for fatigue assessment (Clause 18). Clause 18 “Detailed Assessment of Fatigue Life” is under revision within the framework of the European working group CEN/TC 54/WG 53 – Design methods with the aim of reaching a significant increase in user-friendliness and a clear guideline for the application. This paper is focused on the new informative annex NA ”Instructions for structural stress oriented finite elements analyses using brick and shell elements”. As an essential amendment for the practical user, the determination of structural stress ranges for fatigue assessment of welds is further specified in this new annex. Different application methods for the determination of structural stresses are explained in connection with the requirements for finite element models and analyses. This paper will give a short overview of the proposed approaches of structural stress determination in annex NA of the revised EN 13445-3. It will present the status of the approaches based on the results of fatigue analyses according to EN 13445-3 Clause 18 for different application examples. For verification purposes, the results of the approaches proposed in EN 13445-3 are compared with the results of other pressure vessel design codes for nuclear and non-nuclear application.


Author(s):  
Jürgen Rudolph ◽  
Guy Baylac ◽  
Ralf Trieglaff ◽  
Rüdiger Gawlick ◽  
Michael Krämer ◽  
...  

Abstract The European Pressure Vessel Standard EN 13445 (harmonized Standard acc. to PED 2014/68/EU) provides in its Part 3 (Design) a simplified method for fatigue assessment (Clause 17) and a detailed method of fatigue assessment (Clause 18). While the new revision of Clause 17 has already been adopted, Clause 18 “Detailed Assessment of Fatigue Life” is now available as a consolidated revision in inquiry phase. This major and comprehensive revision has been developed within the framework of the European working group CEN/TC 54/WG 53 – Design methods and constitutes a crucial step towards a modern and user-friendly engineering fatigue assessment method. The overall structure and amendments of Clause 18 are to be presented. All these amendments aim at a significant increase in user friendliness and clear guidelines for application. The following items are to be mentioned in that context: • Fatigue assessment of welded components based on structural stress and structural hot-spot stress approaches, • Detailed guidelines for determining relevant stresses and stress ranges, • Cycle counting proposals in the context of the fatigue assessment method including a critical plane approach. The fatigue assessment of welded components is separated from the fatigue assessment of un-welded parts as it has already been done in previous versions with respective methodological differences. Stress analyses for clause 18 are usually based on detailed finite element analyses (FEA). As an essential amendment for the user, the determination of structural stress ranges for the fatigue assessment of welds is further detailed in a new appropriate annex. Different applicable methods for the determination of structural stresses are explained in connection with the requirements of the finite element models and analyses. The cycle counting issue is comprehensively treated in the context of different design and operation situations (design transients, operational stress-time-histories). The description is detailed towards a critical plane approach. Detailed proposals for implementation in an algorithmic programming framework are given making the described methods ready to use.


Author(s):  
Brian E. Healy

A spectral fatigue analysis using both the surface extrapolation and Battelle structural stress methodologies has been performed on a side shell connection detail typical of a representative FPSO or tanker vessel. This marks the first time the Battelle method has been adapted to spectral fatigue and details of the implementation are presented for narrow banded applications. Fatigue damage at the toe along a number of weld lines is computed for a variety of surface extrapolation strategies and Battelle method options. Results are reported and compared. Recommendations regarding the application of the Battelle method to spectral fatigue are made.


2013 ◽  
Vol 838-841 ◽  
pp. 314-318
Author(s):  
Hang Gang Guo ◽  
Jin Zhang ◽  
Yang Zhang ◽  
Wei Zhang

Though fatigue failure is often happened in steel gate, fatigue design has not yet been included in design or evaluation standards in China. In this paper, analytical theory based structural stress method and structural stress based fatigue analysis method are combined and employed for fatigue life evaluation of plane steel gate. The variation of water head is taken into consideration for the conditions of gate running and resting. In order to give a valid evaluation, the weld located among all components is considered as rigid connection when calculating structural stress. Master S-N curve in ASME code is used for life evaluation. Example shows the method can be used for fatigue analysis of plane steel gate, and can be used to identify fatigue failure zone.


Sign in / Sign up

Export Citation Format

Share Document