ω-Agatoxin IVA, a P-Type Calcium Channel Antagonist, Reduces Nociceptive Processing in Spinal Cord Neurons with Input From the Inflamed But Not From the Normal Knee Joint - An Electrophysiological Study in the RatIn Vivo

1997 ◽  
Vol 9 (10) ◽  
pp. 2193-2201 ◽  
Author(s):  
J. Nebe ◽  
H. Vanegas ◽  
V. Neugebauer ◽  
H.-G. Schaible
1999 ◽  
Vol 81 (6) ◽  
pp. 2620-2626 ◽  
Author(s):  
Johannes Nebe ◽  
Andrea Ebersberger ◽  
Horacio Vanegas ◽  
Hans-Georg Schaible

Effects of ω-agatoxin IVA, a P-type calcium channel antagonist, on the development of spinal neuronal hyperexcitability caused by knee inflammation in rats. Both N- and P-type high-threshold calcium channels are located presynaptically in the CNS and are involved in the release of transmitters. To investigate the importance of P-type calcium channels in the generation of inflammation-evoked hyperexcitability of spinal cord neurons, electrophysiological recordings were made from wide-dynamic-range neurons with input from the knee joint in the anesthetized rat. The responses of each neuron to innocuous and noxious pressure onto the knee and the ankle were continuously assessed before and during the development of an inflammation in the knee joint induced by the injections of K/C into the joint cavity. The specific antagonist at P-type calcium channels ω-agatoxin was administered into a 30-μl trough on the spinal cord surface above the recorded neuron. In most neurons the application of ω-agatoxin before induction of inflammation slightly enhanced the responses to pressure onto the knee and ankle or left them unchanged. Two different protocols were then followed. In the control group (13 rats) only Tyrode was administered to the spinal cord during and after induction of inflammation. In these neurons the responses to mechanical stimuli applied to both the inflamed knee and to the noninflamed ankle showed a significant increase over 4 h. In the experimental group (12 rats) ω-agatoxin was applied during knee injection and in five 15-min periods up to 180 min after kaolin. This prevented the increase of the neuronal responses to innocuous pressure onto the knee and to innocuous and noxious pressure onto the ankle; only the responses to noxious pressure onto the knee were significantly enhanced during development of inflammation. Thus the development of inflammation-evoked hyperexcitability was attenuated by ω-agatoxin, and this suggests that P-type calcium channels in the spinal cord are involved in the generation of inflammation-evoked hyperexcitability of spinal cord neurons. Finally, when ω-agatoxin was administered to the spinal cord 4 h after the kaolin injection, i.e., when inflammation-evoked hyperexcitability was fully established, the responses to innocuous and noxious pressure onto the knee were reduced by 20–30% on average. The shift in the effect of ω-agatoxin, from slight facilitation or no change of the responses before inflammation to inhibition in the state of hyperexcitability, indicates that P-type calcium channels are important for excitatory synaptic transmission involved in the maintenance of inflammation-evoked hyperexcitability.


1997 ◽  
Vol 78 (3) ◽  
pp. 1334-1340 ◽  
Author(s):  
A. El Manira ◽  
N. Bussières

El Manira, A. and N. Bussières. Calcium channel subtypes in lamprey sensory and motor neurons. J. Neurophysiol. 78: 1334–1340, 1997. Pharmacologically distinct calcium channels have been characterized in dissociated cutaneous sensory neurons and motoneurons of the larval lamprey spinal cord. To enable cell identification, sensory dorsal cells and motoneurons were selectively labeled with fluorescein-coupled dextran amine in the intact spinal cord in vitro before dissociation. Calcium channels present in sensory dorsal cells, motoneurons, and other spinal cord neurons were characterized with the use of whole cell voltage-clamp recordings and specific calcium channel agonist and antagonists. The results show that a transient low-voltage-activated (LVA) calcium current was present in a proportion of sensory dorsal cells but not in motoneurons, whereas high-voltage-activated (HVA) calcium currents were seen in all neurons recorded. The different components of HVA current were dissected pharmacologically and similar results were obtained for both dorsal cells and motoneurons. The N-type calcium channel antagonist ω-conotoxin-GVIA(ω-CgTx) blocked >70% of the HVA current. A large part of the ω-CgTx block was reversed after washout of the toxin. The L-type calcium channel antagonist nimodipine blocked ∼15% of the total HVA current. The dihydropyridine agonist (±)-BayK 8644 markedly increased the amplitude of the calcium channel current. The BayK-potentiated current was not affected by ω-CgTx, indicating that the reversibility of the ω-CgTx effect is not due to a blockade of L-type channels. Simultaneous application of ω-CgTx and nimodipine left ∼15% of the HVA calcium channel current, a small part of which was blocked by the P/Q-type channel antagonist ω-agatoxin-IVA. In the presence of the three antagonists, the persistent residual current (∼10%) was completely blocked by cadmium. Our results provide evidence for the existence of HVA calcium channels of the N, L, and P/Q types and other HVA calcium channels in lamprey sensory neurons and motoneurons. In addition, certain types of neurons express LVA calcium channels.


1996 ◽  
Vol 76 (6) ◽  
pp. 3740-3749 ◽  
Author(s):  
V. Neugebauer ◽  
H. Vanegas ◽  
J. Nebe ◽  
P. Rumenapp ◽  
H. G. Schaible

1. The present study addresses the involvement of voltage-dependent calcium channels of the N and L type in the spinal processing of innocuous and noxious input from the knee joint, both under normal conditions and under inflammatory conditions in which spinal cord neurons become hyperexcitable. In 30 anesthetized rats, extracellular recordings were performed from single dorsal horn neurons in segments 1–4 of the lumbar spinal cord. All neurons had receptive fields in the ipsilateral knee joint. In 22 rats, an inflammation was induced in the ipsilateral knee joint by kaolin and carrageenan 4–16 h before the recordings. The antagonist at N-type calcium channels, omega-conotoxin GVIA (omega-CTx GVIA), was administered topically in solution to the dorsal surface of the spinal cord at the appropriate spinal segments in 6 rats with normal joints and in 12 rats with inflamed knee joints. The antagonist at L-type channels, nimodipine, was administered topically in 5 rats with normal joints and in 11 rats with inflamed knee joints. In another five rats with inflamed joints, antagonists at L-type calcium channels (diltiazem and nimodipine) and omega-CTx GVIA were administered ionophoretically with multibarrel electrodes close to the neurons recorded. 2. The topical administration of omega-CTx GVIA to the spinal cord reduced the responses to both innocuous and noxious pressure applied to the knee joint in a sample of 11 neurons with input from the normal joint and in a sample of 16 neurons with input from the inflamed joint (hyperexcitable neurons). The responses were decreased to approximately 65% of the predrug values within administration times of 30 min. A similar reduction of the responses to innocuous and noxious pressure was observed when omega-CTx GVIA was administered ionophoretically to nine hyperexcitable neurons. In neurons with input from the normal or the inflamed knee joint, the administration of omega-CTx GVIA led also to a reduction of the responses to innocuous and noxious pressure applied to the noninflamed ankle joint. 3. The topical administration of nimodipine decreased the responses to innocuous and noxious pressure applied to the knee in a sample of 9 neurons with input from the normal joint and in a sample of 16 neurons with input from the inflamed knee joint (hyperexcitable neurons). Within administration times of 30 min, the responses were reduced to approximately 70% of the predrug values. In hyperexcitable neurons, the responses to innocuous and noxious pressure applied to the knee were also decreased during ionophoretic administration of nimodipine (6 neurons) and diltiazem (9 neurons). When the noninflamed ankle was stimulated, the responses to innocuous pressure were reduced neither in neurons with input from the normal knee nor in neurons with input from the inflamed knee, but the responses of hyperexcitable neurons to noxious pressure onto the ankle were reduced. The ionophoretic administration of the agonist at the L-type calcium channel, S(-)-Bay K 8644, enhanced the responses to mechanical stimulation of the knee joint in all 14 hyperexcitable neurons tested. The effect of S(-)-Bay K 8644 was counteracted by both diltiazem (in 6 of 6 neurons) and nimodipine (in 5 of 5 neurons). 4. These data show that antagonists at both the N- and the L-type voltage-dependent calcium channels influence the spinal processing of input from the knee joint. The data suggest, therefore, that voltage-dependent calcium calcium channels of both the N and the L type are important for the sensory functions of the spinal cord. They are involved in the spinal processing of nonnociceptive as well as nociceptive mechanosensory input from the joint, both under normal and inflammatory conditions. The present results show in particular that N- and L-type channels are likely to be involved in the generation of pain evoked by noxious mechanical stimulation in normal tissue as well as in the mechanical hyperalgesia that is usually pres


Neurosurgery ◽  
1988 ◽  
Vol 22 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Perry Black ◽  
Ronald S. Markowitz ◽  
Sydney D. Finkelstein ◽  
Kathleen McMonagle-Strucko ◽  
John A. Gillespie

1993 ◽  
Vol 39 (5) ◽  
pp. 403-408 ◽  
Author(s):  
Siavash S. Haghighi ◽  
Tyler Stiens ◽  
John J. Oro ◽  
Richard Madsen

Nature ◽  
1987 ◽  
Vol 330 (6148) ◽  
pp. 563-566 ◽  
Author(s):  
François Rieger ◽  
Roland Bournaud ◽  
Takeshi Shimahara ◽  
Luis Garcia ◽  
Martine Pinçon-Raymond ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mariacristina Mazzitelli ◽  
Kendall Marshall ◽  
Andrew Pham ◽  
Guangchen Ji ◽  
Volker Neugebauer

The amygdala is an important neural substrate for the emotional–affective dimension of pain and modulation of pain. The central nucleus (CeA) serves major amygdala output functions and receives nociceptive and affected–related information from the spino-parabrachial and lateral–basolateral amygdala (LA–BLA) networks. The CeA is a major site of extra–hypothalamic expression of corticotropin releasing factor (CRF, also known as corticotropin releasing hormone, CRH), and amygdala CRF neurons form widespread projections to target regions involved in behavioral and descending pain modulation. Here we explored the effects of modulating amygdala neurons on nociceptive processing in the spinal cord and on pain-like behaviors, using optogenetic activation or silencing of BLA to CeA projections and CeA–CRF neurons under normal conditions and in an acute pain model. Extracellular single unit recordings were made from spinal dorsal horn wide dynamic range (WDR) neurons, which respond more strongly to noxious than innocuous mechanical stimuli, in normal and arthritic adult rats (5–6 h postinduction of a kaolin/carrageenan–monoarthritis in the left knee). For optogenetic activation or silencing of CRF neurons, a Cre–inducible viral vector (DIO–AAV) encoding channelrhodopsin 2 (ChR2) or enhanced Natronomonas pharaonis halorhodopsin (eNpHR3.0) was injected stereotaxically into the right CeA of transgenic Crh–Cre rats. For optogenetic activation or silencing of BLA axon terminals in the CeA, a viral vector (AAV) encoding ChR2 or eNpHR3.0 under the control of the CaMKII promoter was injected stereotaxically into the right BLA of Sprague–Dawley rats. For wireless optical stimulation of ChR2 or eNpHR3.0 expressing CeA–CRF neurons or BLA–CeA axon terminals, an LED optic fiber was stereotaxically implanted into the right CeA. Optical activation of CeA–CRF neurons or of BLA axon terminals in the CeA increased the evoked responses of spinal WDR neurons and induced pain-like behaviors (hypersensitivity and vocalizations) under normal condition. Conversely, optical silencing of CeA–CRF neurons or of BLA axon terminals in the CeA decreased the evoked responses of spinal WDR neurons and vocalizations, but not hypersensitivity, in the arthritis pain model. These findings suggest that the amygdala can drive the activity of spinal cord neurons and pain-like behaviors under normal conditions and in a pain model.


Sign in / Sign up

Export Citation Format

Share Document