scholarly journals Optogenetic Manipulations of Amygdala Neurons Modulate Spinal Nociceptive Processing and Behavior Under Normal Conditions and in an Arthritis Pain Model

2021 ◽  
Vol 12 ◽  
Author(s):  
Mariacristina Mazzitelli ◽  
Kendall Marshall ◽  
Andrew Pham ◽  
Guangchen Ji ◽  
Volker Neugebauer

The amygdala is an important neural substrate for the emotional–affective dimension of pain and modulation of pain. The central nucleus (CeA) serves major amygdala output functions and receives nociceptive and affected–related information from the spino-parabrachial and lateral–basolateral amygdala (LA–BLA) networks. The CeA is a major site of extra–hypothalamic expression of corticotropin releasing factor (CRF, also known as corticotropin releasing hormone, CRH), and amygdala CRF neurons form widespread projections to target regions involved in behavioral and descending pain modulation. Here we explored the effects of modulating amygdala neurons on nociceptive processing in the spinal cord and on pain-like behaviors, using optogenetic activation or silencing of BLA to CeA projections and CeA–CRF neurons under normal conditions and in an acute pain model. Extracellular single unit recordings were made from spinal dorsal horn wide dynamic range (WDR) neurons, which respond more strongly to noxious than innocuous mechanical stimuli, in normal and arthritic adult rats (5–6 h postinduction of a kaolin/carrageenan–monoarthritis in the left knee). For optogenetic activation or silencing of CRF neurons, a Cre–inducible viral vector (DIO–AAV) encoding channelrhodopsin 2 (ChR2) or enhanced Natronomonas pharaonis halorhodopsin (eNpHR3.0) was injected stereotaxically into the right CeA of transgenic Crh–Cre rats. For optogenetic activation or silencing of BLA axon terminals in the CeA, a viral vector (AAV) encoding ChR2 or eNpHR3.0 under the control of the CaMKII promoter was injected stereotaxically into the right BLA of Sprague–Dawley rats. For wireless optical stimulation of ChR2 or eNpHR3.0 expressing CeA–CRF neurons or BLA–CeA axon terminals, an LED optic fiber was stereotaxically implanted into the right CeA. Optical activation of CeA–CRF neurons or of BLA axon terminals in the CeA increased the evoked responses of spinal WDR neurons and induced pain-like behaviors (hypersensitivity and vocalizations) under normal condition. Conversely, optical silencing of CeA–CRF neurons or of BLA axon terminals in the CeA decreased the evoked responses of spinal WDR neurons and vocalizations, but not hypersensitivity, in the arthritis pain model. These findings suggest that the amygdala can drive the activity of spinal cord neurons and pain-like behaviors under normal conditions and in a pain model.

Cephalalgia ◽  
1999 ◽  
Vol 19 (7) ◽  
pp. 631-638 ◽  
Author(s):  
GA Lambert ◽  
J Michalicek ◽  
RJ Storer ◽  
AS Zagami

The effect of cortical spreading depression, a proposed initiating event for migraine pain, on cortical blood flow (laser Doppler method) and on the spontaneous firing rate and stimulus-evoked responses of trigemino-cervical neurons with craniovascular input was studied in 17 neurons in 8 cats anesthetized with chloralose. Cortical spreading depression, induced via cortical pinprick injury, produced an initial wave of cortical hyperemia (243 ± 57% of control) and a later and smaller phase of oligemia (96 ± 4% of control). Neither the basal discharge rate (6.7 ± 1.7 sec-1) nor the evoked responses to electrical stimulation of the superior sagittal sinus (4.1 ± 0.8 discharges per stimulus) of upper cervical spinal cord neurons was altered over periods of up to 2 h following one, two, or three waves of spreading cortical depression. We conclude that a small number of episodes of cortical spreading depression is not capable of activating C2 cervical spinal cord craniovascular sensory neurons in the cat.


2019 ◽  
Vol 1 (4) ◽  
Author(s):  
Yustinus Robby Budiman Gondowardojo ◽  
Tjokorda Gde Bagus Mahadewa

The lumbar vertebrae are the most common site for fracture incident because of its high mobility. The spinal cord injury usually happened as a result of a direct traumatic blow to the spine causing fractured and compressed spinal cord. A 38-year-old man presented with lumbar spine’s compression fracture at L2 level. In this patient, decompression laminectomy, stabilization, and fusion were done by posterior approach. The operation was successful, according to the X-Ray and patient’s early mobilization. Pneumothorax of the right lung and pleural effusion of the left lung occurred in this patient, so consultation was made to a cardiothoracic surgeon. Chest tube and WSD insertion were performed to treat the comorbidities. Although the patient had multiple trauma that threat a patient’s life, the management was done quickly, so the problems could be solved thus saving the patient’s life. After two months follow up, the patient could already walk and do daily activities independently.


2020 ◽  
Vol 27 (5) ◽  
pp. 801-804
Author(s):  
Catharina Gronert ◽  
Nikolaos Tsilimparis ◽  
Giuseppe Panuccio ◽  
Ahmed Eleshra ◽  
Fiona Rohlffs ◽  
...  

Purpose: To report a case of chronic intermittent spinal cord ischemia (SCI) after thoracic endovascular aortic repair (TEVAR) and its successful treatment using hypogastric artery stenting. Case Report: A 79-year-old patient presented in May 2013 with a thoracic aortic aneurysm (TAA) and a contained rupture. He urgently underwent TEVAR that covered 274 mm of descending thoracic aorta without immediate postoperative signs of acute SCI. At 3-month follow-up, he reported repeating incidents of sudden lower extremity weakness leading to a fall with a humerus fracture. A neurological consultation revealed the tentative diagnosis of intermittent SCI caused by TEVAR and initially recommended a conservative approach. During the following year there was no clinical improvement of the symptoms. Computed tomography angiography showed a high-grade stenosis of the right hypogastric artery, which was stented in November 2014 to improve the collateral network of spinal cord perfusion. Following treatment, the patient had no further neurological symptoms; at 32 months after the reintervention, the imaging follow-up documented a patent stent and continued exclusion of the TAA. Conclusion: Intermittent neurological symptoms after TEVAR should be suspected as chronic intermittent SCI. The improvement of collateral networks of the spinal cord by revascularization of the hypogastric artery is a viable treatment option.


1999 ◽  
Vol 91 (1) ◽  
pp. 231-239 ◽  
Author(s):  
Uta S. Muth-Selbach ◽  
Irmgard Tegeder ◽  
Kay Brune ◽  
Gerd Geisslinger

Background Prostaglandin play a pivotal role in spinal nociceptive processing. At therapeutic concentrations, acetaminophen is not a cyclooxygenase inhibitor. inhibitor. Thus, it is antinociceptive without having antiinflammatory or gastrointestinal toxic effects. This study evaluated the role of spinal prostaglandin E2 (PGE2) in antinociception produced by intraperitoneally administered acetaminophen. Methods The PGE2 concentrations in the dorsal horn of the spinal cord were measured after formalin was injected into the hind paw of rats. The effect of antinociceptive doses of acetaminophen (100, 200, and 300 mg/kg given intraperitoneally) on PGE2 levels and flinching behavior was monitored Spinal PGE2 and acetaminophen concentrations were obtained by microdialysis using a probe that was implanted transversely through the dorsal horn of the spinal cord at L4. Furthermore, the effects of acetaminophen on urinary prostaglandin excretion were determined. Results Intraperitoneal administration of acetaminophen resulted in a significant decrease in spinal PGE2 release that was associated with a significant reduction in the flinching behavior in the formalin test Acetaminophen was distributed rapidly into the spinal cord with maximum dialysate concentrations 4560 min after intraperitoneal administration. Urinary excretion of prostanoids (PGE2, PGF2alpha, and 6-keto-PGF1alpha) was not significantly altered after acetaminophen administration. Conclusions The data confirm the importance of PGE2 in spinal nociceptive processing. The results suggest that antinociception after acetaminophen administration is mediated, at least in part, by inhibition of spinal PGE2 release. The mechanism, however, remains unknown. The finding that urinary excretion of prostaglandins was not affected might explain why acetaminophen is antinociceptive but does not compromise renal safety.


1994 ◽  
Vol 26 (1-2) ◽  
pp. 169-176 ◽  
Author(s):  
J.M. Castro-Lopes ◽  
T.R. Tölle ◽  
B. Pan ◽  
W. Zieglgänsberger

Sign in / Sign up

Export Citation Format

Share Document