NADPH oxidase inhibitor, apocynin, restores the impaired endothelial-dependent and -independent responses and scavenges superoxide anion in rats with type 2 diabetes complicated by NO dysfunction

2005 ◽  
Vol 7 (4) ◽  
pp. 334-343 ◽  
Author(s):  
T. Hayashi ◽  
P. A. R. Juliet ◽  
H. Kano-Hayashi ◽  
T. Tsunekawa ◽  
D. Dingqunfang ◽  
...  
2016 ◽  
Vol 31 (suppl_1) ◽  
pp. i215-i215
Author(s):  
Dae Cha ◽  
Jin Cha ◽  
Hye Min ◽  
Ki Kim ◽  
Jung Kim ◽  
...  

Author(s):  
Alexandr I. Kokorev ◽  
◽  
Yuriy E. Kolupaev ◽  
Maxim A. Shkliarevskyi ◽  
Anna A. Lugovaya ◽  
...  

Polyamines are plant metabolites involved in many processes under physiologically normal and stressful conditions. Cadaverine is one of the least studied plant polyamines. The relationship between its physiological effects and the formation of signaling mediators, in particular, reactive oxygen species (ROS), has hardly been specially studied. The aim of this work was to study the possible protective effect of cadaverine on wheat (Triticum aestivum L.) seedlings under heat stress and its relationship with the formation and detoxification of ROS by antioxidant enzymes. Etiolated seedlings of soft winter wheat variety Doskonala were used in the work. We treated three-day-old seedlings with cadaverine at concentrations ranging from 0.05 to 2.5 mM by adding it to the root incubation medium. In some variants of the experiment, we treated seedlings with a hydrogen peroxide scavenger dimethylthiourea (DMTU - 150 μM), a diamine oxidase inhibitor aminogunidine (1 mM) or an inhibitor NADPH oxidase imidazole (10 μM), as well as the indicated inhibitors in combination with cadaverine. The hydrogen peroxide content and the activity of antioxidant enzymes were determined in the roots of seedlings a certain time after treatment with the studied compounds. One day after the treatment of seedlings with cadaverine, ROS antagonists, and a combination of effectors, the seedlings were subjected to damaging heating in a water thermostat (10 min at 45 °C). 24 h after heating, we assessed the content of the products of lipid peroxidation (LPO) in the roots and, after 3 days, the survival of seedlings. Incubation in the presence of cadaverine increased the resistance of seedlings to damaging heat (See Fig. 1). The highest relative number of surviving seedlings was observed in the variant with 1 mM cadaverine treatment. Under the effect of cadaverine, the content of hydrogen peroxide in the roots increased (See Fig. 2). We observed a noticeable effect 1-4 h after the start of treatment, with a maximum after 2 h. Treatment of seedlings with a scavenger of hydrogen peroxide DMTU removed the manifestation of the effect of an increase in the content of H2 O2 in the roots caused by the action of cadaverine (See Fig. 3). This effect was also completely eliminated by the diamine oxidase inhibitor aminoguanidine and was almost unchanged in the presence of the NADPH oxidase inhibitor imidazole. The effect of heat stress on seedlings caused an increase in the content of the LPO products in them. Treatment with cadaverine markedly reduced this manifestation of oxidative stress. The antioxidant DMTU and the diamine oxidase inhibitor aminoguanidine largely neutralized the protective effect of cadaverine (See Fig. 4a). At the same time, the NADPH oxidase inhibitor imidazole had almost no effect on the manifestation of the effect of cadaverine on the LPO products content in roots. Under the influence of DMTU and aminoguanidine, but not imidazole, the positive effect of cadaverine on the survival of seedlings after damaging heating was also leveled out (See Fig. 4b). The treatment of seedlings with cadaverine caused a change in the activity of antioxidant enzymes in the roots (superoxide dismutase - SOD, catalase, and guaiacol peroxidase) (See Fig. 5). DMTU and aminoguanidine neutralized the effect of cadaverine-induced increase in the activity of catalase and guaiacol peroxidase, but had almost no effect on the increase in SOD activity in roots induced by this diamine (See Fig. 6). The NADPH oxidase inhibitor imidazole did not significantly affect the manifestation of the effect of increasing the activity of antioxidant enzymes when seedlings are treated with cadaverine. We can conclude that one of the signaling mediators involved in the regulation activity of catalase and guaiacol peroxidase and in the induction of heat resistance of wheat seedlings by exogenous cadaverine is hydrogen peroxide, which is formed during the oxidation of cadaverine by diamine oxidase. At the same time, the modification of SOD activity in the roots of wheat seedlings with cadaverine, apparently, can occur without the participation of ROS.


2008 ◽  
Vol 228 (3) ◽  
pp. 277-285 ◽  
Author(s):  
Chiara Riganti ◽  
Costanzo Costamagna ◽  
Sophie Doublier ◽  
Erica Miraglia ◽  
Manuela Polimeni ◽  
...  

2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Young Sook Kim ◽  
Dong Ho Jung ◽  
Bo‐Jeong Pyun ◽  
So‐Jin Choi Choi ◽  
Jin Sook Kim Kim

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3328
Author(s):  
Eloisa Aparecida Vilas-Boas ◽  
Davidson Correa Almeida ◽  
Leticia Prates Roma ◽  
Fernanda Ortis ◽  
Angelo Rafael Carpinelli

A high caloric intake, rich in saturated fats, greatly contributes to the development of obesity, which is the leading risk factor for type 2 diabetes (T2D). A persistent caloric surplus increases plasma levels of fatty acids (FAs), especially saturated ones, which were shown to negatively impact pancreatic β-cell function and survival in a process called lipotoxicity. Lipotoxicity in β-cells activates different stress pathways, culminating in β-cells dysfunction and death. Among all stresses, endoplasmic reticulum (ER) stress and oxidative stress have been shown to be strongly correlated. One main source of oxidative stress in pancreatic β-cells appears to be the reactive oxygen species producer NADPH oxidase (NOX) enzyme, which has a role in the glucose-stimulated insulin secretion and in the β-cell demise during both T1 and T2D. In this review, we focus on the acute and chronic effects of FAs and the lipotoxicity-induced β-cell failure during T2D development, with special emphasis on the oxidative stress induced by NOX, the ER stress, and the crosstalk between NOX and ER stress.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Ioannis Akoumianakis ◽  
Marios Margaritis ◽  
Fabio Sanna ◽  
Laura Herdman ◽  
Constantinos Psarros ◽  
...  

Background: Insulin resistance (IR) is associated with increased cardiovascular risk. Given that plasma endothelin (ET) is elevated in IR, we explored whether the variations in ET levels mediate the vascular complications of type 2 diabetes (T2DM), by exploring its links with vascular redox state in human vessels. Methods: The study population consisted of 383 patients undergoing coronary bypass surgery (CABG), 30% with T2DM. Levels of ET, insulin growth factor 1 (IGF1), insulin and glucose (to calculate HOMA-IR as an index of insulin resistance) were measured in plasma, while vascular superoxide (O2) was measured in saphenous vein segments obtained during surgery. Results: Patients with untreated T2DM had elevated plasma ET, contrary to treated patients with T2DM (A). A positive association was observed between plasma endothelin and IGF1 levels in non-T2DM, which was reversed in T2DM (B). Elevated plasma ET was associated with increased NADPH-stimulated O2- (indicative of higher NADPH oxidase activity) and more LNAME inhibitable O2- (suggestive of more eNOS uncoupling) in human vessels (C, D). Conclusions: We demonstrate that circulating ET is elevated in untreated T2DM but its levels are normalised after intensive glycaemic control. We also document a striking effect of DM on the balance between ET and IGF1, and we demonstrate for the first time in humans, that elevated plasma ET is associated with increased O2- generation in the vascular wall through activation of NADPH-oxidase and uncoupling of eNOS. This study shows that ET and its interplay with IGF1 is possibly a key mechanism linking T2DM with its vascular complications in humans


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Kenji Shimada ◽  
Yoshiteru Tada ◽  
Kosuke Wada ◽  
Mari Kudo ◽  
Shoko Murakami ◽  
...  

Background and Purpose: Inflammation and apoptosis are recognized as key factors for aneurysmal rupture. Reactive oxygen species (ROS) mediates both inflammation and apoptosis in vascular walls. Therefore, we hypothesized that ROS produced by xanthine oxidase and NADPH oxidase contributes to aneurysmal rupture. Recently we have demonstrated the feasibility of using a mouse model of intracranial aneurysms to test pharmacological therapies for the prevention of aneurysmal rupture. We tested the hypothesis by using this newly established mouse model. Methods: Intracranial aneurysms were induced in male mice using a combination of a single injection of elastase into the cerebrospinal fluid and the deoxycorticosterone acetate (DOCA) salt hypertension. Six days after aneurysm induction, we started 2-week treatment with vehicle (n=27), a superoxide scavenger (tempol; n=13), a xanthine oxidase inhibitor (oxypurinol; n=15), and a NADPH oxidase inhibitor (apocynin; n=16). Aneurysmal rupture was detected by neurological symptoms and confirmed by the presence of intracranial aneurysms with subarachnoid hemorrhage. Dihydroethidium staining and in situ zymography were performed to detect superoxide production and gelatinase activity, respectively. Results: A superoxide scavenger (tempol) significantly reduced rupture rate (vehicle vs. tempol: 74% vs. 27%, P < 0.05) (Figure1). It reduced superoxide production and gelatinase activity in aneurysmal walls (Figure2). Furthermore, the xanthine oxidase inhibitor (oxypurinol), and the NADPH oxidase inhibitor (apocynin) reduced the rupture rate (vehicle vs. oxypurinol: 74% vs. 30%, P< 0.05, vehicle vs. apocynin: 74% vs. 33%, P < 0.05). Conclusion: Our results indicate that superoxide produced by xanthine oxidase and NADPH oxidase contributes to aneurysmal rupture, by activating matrix metalloproteinases.


Sign in / Sign up

Export Citation Format

Share Document