Pancreatic β-cell mass in European subjects with type 2 diabetes

2008 ◽  
Vol 10 ◽  
pp. 32-42 ◽  
Author(s):  
J. Rahier ◽  
Y. Guiot ◽  
R. M. Goebbels ◽  
C. Sempoux ◽  
J. C. Henquin
Physiology ◽  
2009 ◽  
Vol 24 (6) ◽  
pp. 325-331 ◽  
Author(s):  
Marc Y. Donath ◽  
Marianne Böni-Schnetzler ◽  
Helga Ellingsgaard ◽  
Jan A. Ehses

Onset of Type 2 diabetes occurs when the pancreatic β-cell fails to adapt to the increased insulin demand caused by insulin resistance. Morphological and therapeutic intervention studies have uncovered an inflammatory process in islets of patients with Type 2 diabetes characterized by the presence of cytokines, immune cells, β-cell apoptosis, amyloid deposits, and fibrosis. This insulitis is due to a pathological activation of the innate immune system by metabolic stress and governed by IL-1 signaling. We propose that this insulitis contributes to the decrease in β-cell mass and the impaired insulin secretion observed in patients with Type 2 diabetes.


2014 ◽  
Vol 5 (3) ◽  
pp. 278-288 ◽  
Author(s):  
Amelia K. Linnemann ◽  
Mieke Baan ◽  
Dawn Belt Davis

Abstract Because obesity rates have increased dramatically over the past 3 decades, type 2 diabetes has become increasingly prevalent as well. Type 2 diabetes is associated with decreased pancreatic β-cell mass and function, resulting in inadequate insulin production. Conversely, in nondiabetic obesity, an expansion in β-cell mass occurs to provide sufficient insulin and to prevent hyperglycemia. This expansion is at least in part due to β-cell proliferation. This review focuses on the mechanisms regulating obesity-induced β-cell proliferation in humans and mice. Many factors have potential roles in the regulation of obesity-driven β-cell proliferation, including nutrients, insulin, incretins, hepatocyte growth factor, and recently identified liver-derived secreted factors. Much is still unknown about the regulation of β-cell replication, especially in humans. The extracellular signals that activate proliferative pathways in obesity, the relative importance of each of these pathways, and the extent of cross-talk between these pathways are important areas of future study.


2018 ◽  
Vol 10 (3) ◽  
pp. 577-590 ◽  
Author(s):  
Ayumi Kanno ◽  
Shun‐ichiro Asahara ◽  
Mao Kawamura ◽  
Ayuko Furubayashi ◽  
Shoko Tsuchiya ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Patlada Suthamwong ◽  
Manabu Minami ◽  
Toshiaki Okada ◽  
Nonomi Shiwaku ◽  
Mai Uesugi ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Jie Liu ◽  
Xin Sun ◽  
Fu-Liang Zhang ◽  
Hang Jin ◽  
Xiu-Li Yan ◽  
...  

Type 2 diabetes (T2D) is a major public health disease which is increased in incidence and prevalence throughout the whole world. Insulin resistance (IR) in peripheral tissues and insufficient pancreatic β-cell mass and function have been recognized as primary mechanisms in the pathogenesis of T2D, while recently, systemic chronic inflammation resulting from obesity and a sedentary lifestyle has also gained considerable attention in T2D progression. Nowadays, accumulating evidence has revealed extracellular vesicles (EVs) as critical mediators promoting the pathogenesis of T2D. They can also be used in the diagnosis and treatment of T2D and its complications. In this review, we briefly introduce the basic concepts of EVs and their potential roles in the pathogenesis of T2D. Then, we discuss their diagnostic and therapeutic potentials in T2D and its complications, hoping to open new prospects for the management of T2D.


Life Sciences ◽  
2011 ◽  
Vol 89 (17-18) ◽  
pp. 662-670 ◽  
Author(s):  
Atsushi Tajima ◽  
Takashi Hirata ◽  
Kazuo Taniguchi ◽  
Yukiko Kondo ◽  
Sota Kato ◽  
...  

2021 ◽  
Author(s):  
Hung Tae Kim ◽  
Arnaldo H. de Souza ◽  
Heidi Umhoefer ◽  
JeeYoung Han ◽  
Lucille Anzia ◽  
...  

AbstractLoss of functional pancreatic β-cell mass and increased β-cell apoptosis are fundamental to the pathophysiology of both type 1 and type 2 diabetes. Pancreatic islet transplantation has the potential to cure type 1 diabetes but is often ineffective due to the death of the islet graft within the first few years after transplant. Therapeutic strategies to directly target pancreatic β-cell survival are needed to prevent and treat diabetes and to improve islet transplant outcomes. Reducing β-cell apoptosis is also a therapeutic strategy for type 2 diabetes. Cholecystokinin (CCK) is a peptide hormone typically produced in the gut after food intake, with positive effects on obesity and glucose metabolism in mouse models and human subjects. We have previously shown that pancreatic islets also produce CCK. The production of CCK within the islet promotes β-cell survival in rodent models of diabetes and aging. Now, we demonstrate a direct effect of CCK to reduce cytokine-mediated apoptosis in a β-cell line and in isolated mouse islets in a receptor-dependent manner. However, whether CCK can protect human β-cells was previously unknown. Here, we report that CCK can also reduce cytokine-mediated apoptosis in isolated human islets and CCK treatment in vivo decreases β-cell apoptosis in human islets transplanted into the kidney capsule of diabetic NOD/SCID mice. Collectively, these data identify CCK as a novel therapy that can directly promote β-cell survival in human islets and has therapeutic potential to preserve β-cell mass in diabetes and as an adjunct therapy after transplant.One Sentence SummaryCholecystokinin ameliorates pancreatic β-cell death under models of stress and after transplant of human islets.


2004 ◽  
Vol 287 (2) ◽  
pp. E192-E198 ◽  
Author(s):  
Lorna M. Dickson ◽  
Christopher J. Rhodes

The control of pancreatic β-cell growth and survival in the adult plays a pivotal role in the pathogenesis of type 2 diabetes. In certain insulin-resistant states, such as obesity, the increased insulin-secretory demand can often be compensated for by an increase in β-cell mass, so that the onset of type 2 diabetes is avoided. This is why approximately two-thirds of obese individuals do not progress to type 2 diabetes. However, the remaining one-third of obese subjects that do acquire type 2 diabetes do so because they have inadequate compensatory β-cell mass and function. As such, type 2 diabetes is a disease of insulin insufficiency. Indeed, it is now realized that, in the vast majority of type 2 diabetes cases, there is a decreased β-cell mass caused by a marked increase in β-cell apoptosis that outweighs rates of β-cell mitogenesis and neogenesis. Thus a means of promoting β-cell survival has potential therapeutic implications for treating type 2 diabetes. However, understanding the control of β-cell growth and survival at the molecular level is a relatively new subject area of research and still in its infancy. Notwithstanding, recent advances have implicated signal transduction via insulin receptor substrate-2 (IRS-2) and downstream via protein kinase B (PKB, also known as Akt) as critical to the control of β-cell survival. In this review, we highlight the mechanism of IRS-2, PKB, and anti-apoptotic PKB substrate control of β-cell growth and survival, and we discuss whether these may be targeted therapeutically to delay the onset of type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document