Utility of Landsat 7 satellite data for continued monitoring of forest cover change in protected areas in Southeast Asia

2006 ◽  
Vol 27 (1) ◽  
pp. 49-66 ◽  
Author(s):  
Simon N. Trigg ◽  
Lisa M. Curran ◽  
Alice K. McDonald
Geomatics ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 335-346
Author(s):  
Do-Hyung Kim ◽  
Anupam Anand

Evaluation of the effectiveness of protected areas is critical for forest conservation policies and priorities. We used 30 m resolution forest cover change data from 1990 to 2010 for ~4000 protected areas to evaluate their effectiveness. Our results show that protected areas in the tropics avoided 83,500 ± 21,200 km2 of deforestation during the 2000s. Brazil’s protected areas have the largest amount of avoided deforestation at 50,000 km2. We also show the amount of international aid received by tropical countries compared to the effectiveness of protected areas. Thirty-four tropical countries received USD 42 billion during the 1990s and USD 62 billion during the 2000s in international aid for biodiversity conservation. The effectiveness of international aid was highest in Latin America, with 4.3 m2/USD, led by Brazil, while tropical Asian countries showed the lowest average effect of international aid, reaching only 0.17 m2/USD.


Author(s):  
Juan Jose Miranda ◽  
Leonardo Corral ◽  
Allen Blackman ◽  
Gregory Asner ◽  
Eirivelthon Lima

2020 ◽  
Author(s):  
Marinela-Adriana Chețan ◽  
Andrei Dornik

<p>Natura 2000 network, the world's largest network of protected areas, is considered a success for habitat and biodiversity protection, in the last decades. Our objective is to develop an algorithm for satellite data temporal analysis of protected areas, and to apply subsequently this algorithm for analysis of all Natura 2000 sites in Europe. We have developed an algorithm for satellite data temporal analysis of protected areas using JavaScript in Google Earth Engine, which is a web interface for the massive analysis of geospatial data, providing access to huge amount of data and facilitating development of complex workflows. This work focused on analysis of Global Forest Change dataset representing forest change, at 30 meters resolution, globally, between 2000 and 2018. Our results show that at least regarding forest protection, the network is not very successful, the 25350 sites losing 35246.8 km<sup>2</sup> of forest cover between 2000 and 2018, gaining only 9862.1 km<sup>2</sup>. All 28 countries recorded a negative forest net change, with a mean value of -906.6 km<sup>2</sup>, the largest forest area change recording Spain (-5106.4 km<sup>2</sup> in 1631 sites), Poland (-4529 km<sup>2</sup> in 962 sites), Portugal (-2781.9 km<sup>2</sup> in 120 sites), Romania (-1601.4 km<sup>2</sup> in 569 sites), Germany (-1365.7 km<sup>2</sup> in 5049 sites) and France (-1270.9 km<sup>2</sup> in 1520 sites). Among countries with the lowest values in net forest change is Ireland (-17.4 km<sup>2</sup> in 447 sites), Estonia (-104.1 km<sup>2</sup> in 518 sites), Netherlands (-132.3 km<sup>2</sup> in 152 sites), Finland (-268.6 km<sup>2</sup> in 1722 sites) and Sweden (-341.6 km<sup>2</sup> in 3786 sites).</p>


2013 ◽  
Vol 10 (8) ◽  
pp. 12625-12653 ◽  
Author(s):  
H.-J. Stibig ◽  
F. Achard ◽  
S. Carboni ◽  
R. Raši ◽  
J. Miettinen

Abstract. The study assesses the extent and trends of forest cover in Southeast Asia for the period 1990–2000–2010 and provides an overview on the main drivers of forest cover change. A systematic sample of 418 sites (10 km × 10 km size) located at the one-degree geographical confluence points and covered with satellite imagery of 30 m resolution is used for the assessment. Techniques of image segmentation and automated classification are combined with visual satellite image interpretation and quality control, involving forestry experts from Southeast Asian countries. The accuracy of our results is assessed through an independent consistency assessment, performed from a subsample of 1572 mapping units and resulting in an overall agreement of > 85% for the general differentiation of forest cover vs. non-forest cover. The total forest cover of Southeast Asia is estimated at 268 Mha in 1990, dropping to 236 Mha in 2010, with annual change rates of 1.75 Mha (~0.67% and 1.45 Mha (~0.59%) for the periods 1990–2000 and 2000–2010, respectively. The vast majority of forest cover loss (~2/3 for 2000–2010) occurred in insular Southeast Asia. Combining the change patterns visible from satellite imagery with the output of an expert consultation on the main drivers of forest change highlights the high pressure on the region's remaining forests. The conversion of forest cover to cash crop plantations (e.g. oil palm) is ranked as the dominant driver of forest change in Southeast Asia, followed by selective logging and the establishment of tree plantations.


2016 ◽  
Vol 12 (30) ◽  
pp. 152
Author(s):  
Jose Luis Muñoz Marcillo ◽  
Marcelo Andrade Mesía ◽  
Betty González Osorio

The "Mache-Chindul" -REMACH- Ecological Reserve is one of the 33 natural areas that make up the National System of Protected Areas - SNAP-, administered by the Ecuadorian government through the Ministry of Environment, MAE. This ecological reserve protects one of the few remnants of tropical dry Ecuador forest, as well as a variety of endemic species of flora and fauna, many of which are endangered, the study allowed us to determine the multitemporal cover change plant (natural forest, pasture and cultivated timberline) and fragmentation of forest area between 2002- 2012 with the implementation of programs GIS and ArcGIS Desktop 9.3 Er Mapper. Information of the study area was lifted from satellite Landsat 7 ETM (spatial resolution 30 m per pixel) to the same as a composition of pseudo color (RGB-431) and a classification applied supervised using the method of Minimum Distance. The ecological reserve has an area of 53,662 hectares of natural forest, equivalent to 44.7 % of total area, 23.1 % is regeneration or recovery of natural forest with an area of 27,707 hectares; the natural forest has undergone several interventions, considering the most affected and the peripheral area south of the rivet end, fragmentation was of 38,632 was equivalent to 32.2 % of the total area of the reserve, in the category of cultivated grass product the increase of the agricultural frontier and decreasing natural forest cover from the illegal extraction of wood, also the pressure from timber companies and colonization fronts, concerning the population index this has decreased from 5.71 to 5.39 hab / km2.


Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 25
Author(s):  
Emmanuel Da Da Ponte ◽  
Monserrat García-Calabrese ◽  
Jennifer Kriese ◽  
Nestor Cabral ◽  
Lidia Perez de Perez de Molas ◽  
...  

Over the past 40 years, Paraguay has lost the majority of its natural forest cover, thus becoming one of the countries with the highest deforestation rates in the world. The rapid expansion of the agricultural frontier, cattle ranching, and illegal logging between 1987 and 2012 resulted in the loss of 27% of original forest cover, equivalent to almost 44,000 km2. Within this context, the present research provides the first yearly analysis of forest cover change in the Paraguayan Chaco between the years 1987 and 2020. Remote sensing data obtained from Landsat images were applied to derive annual forest cover masks and deforestation rates over 34 years. Part of this study is a comprehensive assessment of the effectiveness of protected areas, as well as an analysis of the degree of fragmentation of the forest. All classification results obtained accuracies above 80% and revealed a total forest cover loss of approximately 64,700 km2. Forest clearing within protected areas was not frequent; however, some natural reserves presented losses of up to 25% of their forest cover. Through the consideration of several landscape metrics, this study reveals an onward fragmentation of forest cover, which endangers the natural habitat of numerous species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ranjit Mahato ◽  
Gibji Nimasow ◽  
Oyi Dai Nimasow ◽  
Dhoni Bushi

AbstractSonitpur and Udalguri district of Assam possess rich tropical forests with equally important faunal species. The Nameri National Park, Sonai-Rupai Wildlife Sanctuary, and other Reserved Forests are areas of attraction for tourists and wildlife lovers. However, these protected areas are reportedly facing the problem of encroachment and large-scale deforestation. Therefore, this study attempts to estimate the forest cover change in the area through integrating the remotely sensed data of 1990, 2000, 2010, and 2020 with the Geographic Information System. The Maximum Likelihood algorithm-based supervised classification shows acceptable agreement between the classified image and the ground truth data with an overall accuracy of about 96% and a Kappa coefficient of 0.95. The results reveal a forest cover loss of 7.47% from 1990 to 2000 and 7.11% from 2000 to 2010. However, there was a slight gain of 2.34% in forest cover from 2010 to 2020. The net change of forest to non-forest was 195.17 km2 in the last forty years. The forest transition map shows a declining trend of forest remained forest till 2010 and a slight increase after that. There was a considerable decline in the forest to non-forest (11.94% to 3.50%) from 2000–2010 to 2010–2020. Further, a perceptible gain was also observed in the non-forest to the forest during the last four decades. The overlay analysis of forest cover maps show an area of 460.76 km2 (28.89%) as forest (unchanged), 764.21 km2 (47.91%) as non-forest (unchanged), 282.67 km2 (17.72%) as deforestation and 87.50 km2 (5.48%) as afforestation. The study found hotspots of deforestation in the closest areas of National Park, Wildlife Sanctuary, and Reserved Forests due to encroachments for human habitation, agriculture, and timber/fuelwood extractions. Therefore, the study suggests an early declaration of these protected areas as Eco-Sensitive Zone to control the increasing trends of deforestation.


2020 ◽  
Author(s):  
Kathryn Powlen ◽  
Michael C. Gavin ◽  
Kelly W. Jones

Understanding the factors that drive protected area outcomes is critical to increase the success of global conservation efforts. Until recently, our understanding of the influence of management effectiveness has been restricted by the limited availability of standardized management data and study design limitations of prior evaluations. Here we use a quasi-experimental matching approach to test the influence of management effectiveness on forest cover change inside 46 protected areas in Mexico. We test the influence of five management categories, including context and planning, administration and finance, use and benefits, governance and social participation, and management quality, as well as an overall effectiveness score, using a subgroup analysis and an interaction term in post-matching multiple linear regression. Our results show that protected areas with higher management effectiveness have a greater effect on reducing deforestation compared to those with low management effectiveness, but that both types of protected areas experience less forest loss compared to similar unprotected areas. We find this trend in all five of the management categories and the overall score, with administration and finance scores having the greatest effect on forest loss outcomes. Our findings suggest careful design and planning, effective participation from multiple stakeholders and equal sharing of benefits, and sufficient human and financial capital can improve the effectiveness of protected areas in preventing forest loss.


2020 ◽  
Vol 12 (15) ◽  
pp. 6123
Author(s):  
Changjun Gu ◽  
Pei Zhao ◽  
Qiong Chen ◽  
Shicheng Li ◽  
Lanhui Li ◽  
...  

Himalaya, a global biodiversity hotspot, has undergone considerable forest cover fluctuation in recent decades, and numerous protected areas (PAs) have been established to prohibit forest degradation there. However, the spatiotemporal characteristics of this forest cover change across the whole region are still unknown, as are the effectiveness of its PAs. Therefore, here, we first mapped the forest cover of Himalaya in 1998, 2008, and 2018 with high accuracy (>90%) using a random forest (RF) algorithm based on Google Earth Engine (GEE) platform. The propensity score matching (PSM) method was applied with eight control variables to balance the heterogeneity of land characteristics inside and outside PAs. The effectiveness of PAs in Himalaya was quantified based on matched samples. The results showed that the forest cover in Himalaya increased by 4983.65 km2 from 1998 to 2008, but decreased by 4732.71 km2 from 2008 to 2018. Further analysis revealed that deforestation and reforestation mainly occurred at the edge of forest tracts, with over 55% of forest fluctuation occurring below a 2000 m elevation. Forest cover changes in PAs of Himalaya were analyzed; these results indicated that about 56% of PAs had a decreasing trend from 1998 to 2018, including the Torsa (Ia PA), an area representative of the most natural conditions, which is strictly protected. Even so, as a whole, PAs in Himalaya played a positive role in halting deforestation.


Sign in / Sign up

Export Citation Format

Share Document