Change in optical properties of stratum corneum induced by protein carbonylation in vitro

2008 ◽  
Vol 30 (1) ◽  
pp. 41-46 ◽  
Author(s):  
I. Iwai ◽  
K. Ikuta ◽  
K. Murayama ◽  
T. Hirao
2020 ◽  
Vol 17 (2) ◽  
pp. 140-147
Author(s):  
Karna B. Ghimirey ◽  
Kevin Ita

Objective: In vitro diffusion experiments were performed to assess the permeation of magnesium sulfate across pig skin. Method: The mean thickness of the dermatomed porcine skin was 648 ± 12 µm. Magnesium concentration was measured using inductively coupled plasma-optical emission spectroscopy. Transdermal flux of magnesium sulfate across MN-treated and untreated porcine skin was obtained from the slope of the steady-state linear portion of cumulative amount versus time curve. Results: Statistical analysis of the results was done with Student’s t-test. The transdermal flux of magnesium sulfate across microneedle-treated porcine skin was 134.19 ± 2.4 µg/cm2/h and transdermal flux across untreated porcine skin was 4.64 ± 0.05 µg/cm2/h. Confocal microscopy was used to visualize the microchannels created by a solid microneedle roller (500 µm). Conclusion: From our confocal microscopy studies, it was evident that the 500 μm long microneedles disrupted the stratum corneum and created microchannels measuring 191 ± 37 µm. The increase in transdermal flux across the microneedle-treated skin was statistically significant compared to that of controls, i.e., without the application of microneedles. With the application of microneedles, the transdermal flux of magnesium permeated over 12 h was approximately 33-fold higher in comparison to passive diffusion across an intact stratum corneum.


2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Alessandro Polini ◽  
Stefano Pagliara ◽  
Andrea Camposeo ◽  
Roberto Cingolani ◽  
Xiaohong Wang ◽  
...  
Keyword(s):  

2001 ◽  
Author(s):  
Alexey N. Bashkatov ◽  
Elina A. Genina ◽  
Irina V. Korovina ◽  
Yurii P. Sinichkin ◽  
Olga V. Novikova ◽  
...  

2002 ◽  
Vol 47 (12) ◽  
pp. 2059-2073 ◽  
Author(s):  
A N Yaroslavsky ◽  
P C Schulze ◽  
I V Yaroslavsky ◽  
R Schober ◽  
F Ulrich ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
F. Mousseau ◽  
C. Féraudet Tarisse ◽  
S. Simon ◽  
T. Gacoin ◽  
A. Alexandrou ◽  
...  

We developed a portable, fast, highly sensitive and quantitative in vitro assay for on-site biomolecule detection by combining the remarkable optical properties of new lanthanide-doped nanoparticle probes with a simple reader coupled to a smartphone.


1989 ◽  
Vol 8 (5) ◽  
pp. 853-859 ◽  
Author(s):  
Ronald C. Wester ◽  
Howard I. Maibach

Contaminants exist in ground and surface water. Human skin has the capacity to bind and then absorb these contaminants into the body during swimming and bathing. Powdered human stratum corneum will bind both lipid-soluble (alachlor, polychlorinated biphenyls [PCBs], benzene) and water-soluble (nitroaniline) chemicals. In vitro (human skin) and in vivo (Rhesus monkey) studies show that these chemicals readily distribute into skin, and then some of the chemical is absorbed into the body. Linearity in binding and absorption exists for nitroaniline over a 10-fold concentration range. Multiple exposure to benzene is at least cumulative. Binding and absorption can be significant for exposures as short as 30 min, and will increase with time. Absorption with water dilution increased for alachlor, but not for dinoseb. Soap reversed the partitioning of alachlor between human stratum corneum and water. The PCBs could be removed from skin by soap and water (70% efficiency) for up to 3 h and then decontamination potential decreased, due to continuing skin absorption. The model in vitro and in vivo systems used should permit easy estimation of this area of extensive human exposure effect on risk assessment.


Sign in / Sign up

Export Citation Format

Share Document