Microneedle-Assisted Percutaneous Transport of Magnesium Sulfate

2020 ◽  
Vol 17 (2) ◽  
pp. 140-147
Author(s):  
Karna B. Ghimirey ◽  
Kevin Ita

Objective: In vitro diffusion experiments were performed to assess the permeation of magnesium sulfate across pig skin. Method: The mean thickness of the dermatomed porcine skin was 648 ± 12 µm. Magnesium concentration was measured using inductively coupled plasma-optical emission spectroscopy. Transdermal flux of magnesium sulfate across MN-treated and untreated porcine skin was obtained from the slope of the steady-state linear portion of cumulative amount versus time curve. Results: Statistical analysis of the results was done with Student’s t-test. The transdermal flux of magnesium sulfate across microneedle-treated porcine skin was 134.19 ± 2.4 µg/cm2/h and transdermal flux across untreated porcine skin was 4.64 ± 0.05 µg/cm2/h. Confocal microscopy was used to visualize the microchannels created by a solid microneedle roller (500 µm). Conclusion: From our confocal microscopy studies, it was evident that the 500 μm long microneedles disrupted the stratum corneum and created microchannels measuring 191 ± 37 µm. The increase in transdermal flux across the microneedle-treated skin was statistically significant compared to that of controls, i.e., without the application of microneedles. With the application of microneedles, the transdermal flux of magnesium permeated over 12 h was approximately 33-fold higher in comparison to passive diffusion across an intact stratum corneum.

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 804
Author(s):  
Andrea Ariano ◽  
Nadia Musco ◽  
Lorella Severino ◽  
Anna De Maio ◽  
Annabella Tramice ◽  
...  

The use of seaweeds as additives in animal nutrition may be a valid option to traditional feed as they represent a rich source of minerals, carbohydrates and antioxidants. The aim of this study was to analyze the chemical composition and in vitro antioxidant capacity of two tropical eucheumatoids, Kappaphycus alvarezii and Kappaphycus striatus, in Malaysian wild offshore waters. The chemical analysis was performed via inductively coupled plasma–optical emission spectroscopy for evaluating the concentration of toxic (Cd, Pb, Hg, As) and essential elements (Mn, Fe, Cu, Ni, Zn, Se); NMR spectroscopy was used for carrageenans investigation. Furthermore, the soluble and fat-soluble antioxidant capacities were determined by FRAP, DPPH and ABTS assays. The chemical analysis revealed a higher content of trace elements in K. alvarezii as compared to K. striatus, and both exhibited a high mineral content. No significant differences in metal concentrations were found between the two species. Both samples showed a mixture of prevailing κ- and t-carrageenans. Finally, the levels of soluble and fat-soluble antioxidants in K. alvarezii were significantly higher than in K. striatus. Our findings suggest that K. alvarezii could be used as a potential feed additive because of its favorable chemical and nutritional features.


Author(s):  
Adel M Michael ◽  
Ahmed A Mohamed ◽  
Yousef A Abdelaziz ◽  
Nesma M Fahmy

Abstract Background Inductively coupled plasma is widely used for elemental analysis with the advantage of being eco-friendly since the discharge is free of contaminants. Objective A rapid, novel method was developed for the quantitation of trace elements using inductively coupled plasma with optical emission spectrometry.This method has the advantage of simultaneous calibration compared to the conventional method. Method The assay was carried out for iron, copper, zinc, and molybdenum using the linear regression model partial least-squares. Results The method was optimized and validated as per the International Conference on Harmonization guidelines, showing highly accurate and precise results. The linearity range was 0.25–4 ppm for all trace elements under investigation. The method was applied for the assay of the cited elements in non-chelated and amino acid chelated multi-mineral preparations in the Egyptian market with acceptable mean percent recovery. Conclusions In comparison with the official method by flame emission, statistical analysis showed no significant difference with Student’s t-test and F-values. Highlights Inductively coupled plasma is superior as all of the elements can be measured simultaneously. The method was found to have a high degree of specificity and can be easily applied in routine elemental analysis in laboratories.


Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 724-730 ◽  
Author(s):  
Qing Ge ◽  
Paul A. Cobine ◽  
Leonardo De La Fuente

Xylella fastidiosa is a xylem-limited plant pathogenic bacterium that causes disease in many crops worldwide. Copper (Cu) is an antimicrobial agent widely used on X. fastidiosa hosts to control other diseases. Although the effects of Cu for control of foliar pathogens are well known, it is less studied on xylem-colonizing pathogens. Previous results from our group showed that low concentrations of CuSO4 increased biofilm formation, whereas high concentrations inhibited biofilm formation and growth in vitro. In this study, we conducted in planta experiments to determine the influence of Cu in X. fastidiosa infection using tobacco as a model. X. fastidiosa-infected and noninfected plants were watered with tap water or with water supplemented with 4 mM or 8 mM of CuSO4. Symptom progression was assessed, and sap and leaf ionome analysis was performed by inductively coupled plasma with optical emission spectroscopy. Cu uptake was confirmed by increased concentrations of Cu in the sap of plants treated with CuSO4-amended water. Leaf scorch symptoms in Cu-supplemented plants showed a trend toward more severe at later time points. Quantification of total and viable X. fastidiosa in planta indicated that CuSO4-amended treatments did not inhibit but slightly increased the growth of X. fastidiosa. Cu in sap was in the range of concentrations that promote X. fastidiosa biofilm formation according to our previous in vitro study. Based on these results, we proposed that the plant Cu homeostasis machinery controls the level of Cu in the xylem, preventing it from becoming elevated to a level that would lead to bacterial inhibition.


2013 ◽  
Vol 11 (2) ◽  
pp. 140-150 ◽  
Author(s):  
Nasser Mostafa ◽  
Abdallah Shaltout ◽  
Lachezar Radev ◽  
Hassan Hassan

AbstractThe present work investigates surface biocompatibility of silicon-substituted calcium phosphate ceramics. Different silicon-substituted calcium phosphate ceramic bodies were prepared from co-precipitated powders by sintering at 1300°C. The in vitro bioactivity of the ceramics was assessed in simulated body fluid (SBF) at 37°C for periods up to 4 weeks. The changes in the surface morphology and composition were determined by scanning electron microscopy (SEM) coupled with electron probe microanalysis and energy dispersive spectrometer (EDX). Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to observe the change in ionic concentration of SBF after removal of the samples. The bioactivity of the ceramics increased with an increasing silicate ion substitution in a systematic way. The surface of ceramics with 2.23% silicon substitution was partially covered with apatite layer after one week, while ceramics with 8.1% silicon substitution were completely covered with apatite in the first week. The porous microstructure of high-concentration Si-substituted ceramics helps the dissolution of surface ions and the leaching process. This allows SBF to reach supersaturation in a short time and accelerate the deposition of apatite layer.


Proceedings ◽  
2020 ◽  
Vol 62 (1) ◽  
pp. 6
Author(s):  
Ta Anh Tuan ◽  
Elena V. Guseva ◽  
Le Hong Phuc ◽  
Nguyen Quan Hien ◽  
Nguyen Viet Long ◽  
...  

Bioactive glasses 70SiO2–(30-x)CaO–xZnO (x = 1, 3, 5 mol.%) were prepared by the acid-free hydrothermal method in keeping with green chemical technology. The synthetic glasses were investigated by TG-DSC, BET, XRD, and SEM–EDX methods. All synthetic glasses present mesoporous structures consisting of aggregates of nanoparticles. The bioactivity of synthetic glasses was confirmed through the formation of the hydroxyapatite phase after an in vitro experiment in simulated body fluid (SBF) solution. The effect of Zn addition is shown through the decrease in the bioactivity of synthetic glasses. Additionally, the inductively coupled plasma optical emission spectrometry (ICP-OES) analysis indicates that the Zn ions were released from the glassy networks during in vitro experiments, and they act as Zn(OH)2 suspended precipitation to inhibit the apatite deposition. The in vitro experiment in cell culture matter was performed for SaOS2 and Eahy929 cells. The results confirm the biocompatibility of synthetic glasses and the role of Zn addition in the proliferation of living cells.


Author(s):  
M. Blum ◽  
M. Sayed ◽  
E. M. Mahmoud ◽  
A. Killinger ◽  
R. Gadow ◽  
...  

AbstractThis investigation aims to study a novel biologically derived coating applied on Ti alloy substrates. Obtained from a low-cost fish bone resource, a nanocrystalline hydroxyapatite has been synthesized and converted to an organic suspension. Coating was then manufactured by a high-velocity suspension flame spray process. The microstructure, phase composition, coating thickness, and roughness of hydroxyapatite (HA)-coated samples were studied. The results indicated the presence of both hydroxyapatite and β-tricalcium phosphate phases and the final coating layer was uniform and dense. In vitro bioactivity and biodegradability of the HA/Ti composite samples were estimated by immersion in simulated body fluid. Remarkable reductions in Ca2+ and PO43− ion concentrations were observed as well as low weight loss percentage and a slight variation in the pH value, indicating the generation of an apatite layer on the surface of all studied samples. Scanning electron microscopy, energy-dispersive x-ray analysis, and inductively coupled plasma–optical emission spectrometry confirm these results. Thus biological derived HA coatings are a promising candidate to enhance bioactivity and biodegradability of bone implants. To demonstrate feasibility on commercial medical components, a medical screw was coated and evaluated.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Fadi N. Barrak ◽  
Siwei Li ◽  
Albert M. Muntane ◽  
Julian R. Jones

Abstract Background With increasing numbers of dental implants placed annually, complications such as peri-implantitis and the subsequent periprosthetic osteolysis are becoming a major concern. Implantoplasty, a commonly used treatment of peri-implantitis, aims to remove plaque from exposed implants and reduce future microbial adhesion and colonisation by mechanically modifying the implant surface topography, delaying re-infection/colonisation of the site. This in vitro study aims to investigate the release of particles from dental implants and their effects on human gingival fibroblasts (HGFs), following an in vitro mock implantoplasty procedure with a diamond burr. Materials and methods Commercially available implants made from grade 4 (commercially pure, CP) titanium (G4) and grade 5 Ti-6Al-4 V titanium (G5) alloy implants were investigated. Implant particle compositions were quantified by inductively coupled plasma optical emission spectrometer (ICP-OES) following acid digestion. HGFs were cultured in presence of implant particles, and viability was determined using a metabolic activity assay. Results Microparticles and nanoparticles were released from both G4 and G5 implants following the mock implantoplasty procedure. A small amount of vanadium ions were released from G5 particles following immersion in both simulated body fluid and cell culture medium, resulting in significantly reduced viability of HGFs after 10 days of culture. Conclusion There is a need for careful evaluation of the materials used in dental implants and the potential risks of the individual constituents of any alloy. The potential cytotoxicity of G5 titanium alloy particles should be considered when choosing a device for dental implants. Additionally, regardless of implant material, the implantoplasty procedure can release nanometre-sized particles, the full systemic effect of which is not fully understood. As such, authors do not recommend implantoplasty for the treatment of peri-implantitis.


2021 ◽  
pp. 232020682110157
Author(s):  
Abdolrasoul Rangrazi ◽  
Amirtaher Mirmortazavi ◽  
Reyhaneh Imani ◽  
Davood Nodehi

Aim: The aim of this study was to evaluate the effect of the ozonated water on corrosion of a cobalt–chromium (Co-Cr)-based alloy, which is applied for the fabrication of metal frameworks of removable partial dentures. Materials and Methods: In this in vitro study, a total of 30 disk-shaped samples of a Co-Cr alloy were papered and randomly divided into two groups of 15 specimens. In group 1 (control), the specimens were stored in distilled water (DW), and in group 2, the specimens were stored in ozonated water. Around 90 immersions were performed, and the weight change of each specimen was determined. The ion release was analyzed using an inductively coupled plasma-optical emission spectrophotometer. The potentiodynamic polarization test was performed for each group to assess the corrosion resistance of the Co-Cr alloy. The statistical analysis was performed using SPSS version 22. Data were analyzed by independent samples’ t-test. Results: The results showed no significant difference between the weight changes of the two groups. The test using an inductively coupled plasma-optical emission spectrophotometer demonstrated no significant difference between the groups in Co and Cr ions release. In the potentiodynamic polarization test, both groups present similar corrosion behavior, and ozonated water has no deleterious effect on the corrosion resistance and passive range of the Co-Cr alloy compared to DW. Conclusion: As compared to DW, ozonated water has no significant deleterious effect on the corrosion resistance of the Co-Cr frameworks and can be used for cleaning the removable partial dentures.


Sign in / Sign up

Export Citation Format

Share Document