scholarly journals The influence of ozone, acid mist and soil nutrient status on Norway spruce [Picea abies (L.) Karst.]. II. Photosynthesis, dark respiration and soluble carbohydrates of trees during late autumn

1990 ◽  
Vol 115 (1) ◽  
pp. 149-156 ◽  
Author(s):  
J. D. BARNES ◽  
D. EAMUS ◽  
K. A. BROWN
1994 ◽  
Vol 74 (4) ◽  
pp. 387-392 ◽  
Author(s):  
J. W. Fyles ◽  
B. Côté

The influence of 40 years of red pine and Norway spruce growth on forest floor and soil nutrient status was examined in a well-replicated series of plantation blocks established on abandoned agricultural land. Concentrations of N, P, K and Ca, and mass of organic matter and all nutrients in the forest floor were higher under spruce than under pine. In the mineral soil, concentrations of exchangeable K and Ca were higher under spruce whereas Mg, extractable P and mineralizable N did not differ between the species. Forest floor pH was higher under spruce but mineral soil pH did not differ between the species. The soil characteristics reflected litter chemistry of the two species. Relative to pine, spruce foliage litter was consistently higher in nutrient concentration and had lower acidity and higher ash bases. The results are inconsistent with the reputation of Norway spruce as a species that strongly acidifies soils, an observation that may be the result of elevated levels of Ca and K in our soils relative to those in other studies where acidification has been observed. This research demonstrates that soil fertility can be altered significantly by tree species effects over the period of a single rotation. Key words: Forest soil fertility, plantation, acidity, forest floor, leaf litter


1999 ◽  
Vol 29 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Lars Vesterdal

Mass loss and nutrient release from decomposing foliage litter of beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) were studied at three sites along a soil fertility gradient. The influence of soil type on initial litter quality and on decomposition was separated by reciprocal transplantation of litter among soil types using the litterbag technique. Decomposition of beech litter was influenced by both initial litter quality and incubation site. Mass loss in beech litter was positively influenced by soil nutrient status. Decomposition of Norway spruce litter was not affected by initial litter quality, and the positive influence of a nutrient-rich soil environment on decomposition was weak. Nutrient release in litters of both tree species was greatly affected by soil type through its influence on initial litter quality, as nutrient release was positively related to initial nutrient concentrations. Nutrient release was less affected through the soil environment, as it only influenced release of some nutrients, and the differences were not consistently related to soil nutrient status or mass loss. The influence of soil type on decomposition differed among the two tree species, suggesting that it may be more significant in species that produce relatively higher quality litter.


Sign in / Sign up

Export Citation Format

Share Document