Behavioural State Cycles in Abnormal Infants

2008 ◽  
Vol 15 (5) ◽  
pp. 606-615 ◽  
Author(s):  
H. F. R. Prechtl ◽  
K. Theorell ◽  
A. W. Blair
Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 91
Author(s):  
Jaime Manning ◽  
Deborah Power ◽  
Amy Cosby

The five freedoms and, more recently, the five domains of animal welfare provide internationally recognised frameworks to evaluate animal welfare practices which recognise both the physical and mental wellbeing needs of animals, providing a balanced view of their ability to cope in their environment. Whilst there are many techniques to measure animal welfare, the challenge lies with how best to align these with future changes in definitions and expectations, advances in science, legislative requirements, and technology improvements. Furthermore, enforcement of current animal welfare legislation in relation to livestock in Australia and the reliance on self-audits for accreditation schemes, challenges our ability to objectively measure animal welfare. On-animal sensors have enormous potential to address animal welfare concerns and assist with legislative compliance, through continuous measurement and monitoring of an animal’s behavioural state and location being reflective of their wellbeing. As reliable animal welfare measures evolve and the cost of on-animal sensors reduce, technology adoption will increase as the benefits across the supply chain are realised. Future adoption of on-animal sensors by producers will primarily depend on a value proposition for their business being clear; algorithm development to ensure measures are valid and reliable; increases in producer knowledge, willingness, and trust in data governance; and improvements in data transmission and connectivity.


1985 ◽  
Vol 54 (5) ◽  
pp. 1282-1294 ◽  
Author(s):  
M. G. Hoy ◽  
R. F. Zernicke ◽  
J. L. Smith

Intralimb kinetics of the paw-shake response (PSR) were studied in four spinal, adult cats. Using rigid body equations of motion to determine the dynamic interactions between limb segments, knee and ankle joint kinetics were calculated for the steady-state cycles as defined in the preceding paper. Hindlimb motion was filmed (200 frames/s) to obtain knee and ankle kinematics. Responses of flexors and extensors at both joints were recorded synchronously with cinefilm. Ankle and knee joint kinematics were determined from 51 steady-state cycles of 16 PSRs. Average maximum displacements, velocities, and accelerations were substantially greater for the ankle than for the knee joint. Knee and ankle motions were out of phase in the first part of the cycle; knee extension occurred simultaneously with ankle flexion. In the second part of the cycle, motions at the two joints were sequential; rapid knee flexion, accompanied by negligible ankle displacement, preceded rapid ankle extension with minimal knee displacement. At the ankle joint, peak net moments tending to cause flexion and extension were similar in magnitude and determined primarily by muscle moments. Moments due to leg angular acceleration contributed significantly to an extensor peak in the net moment near the end of the cycle. Other inertial and gravitational moments were small. At the knee joint, net moments tending to cause flexion and extension were also similar, but smaller than those at the ankle. The knee muscle moments, however, were large and counteracted large inertial moments due to paw angular acceleration. Also, moments due to leg angular acceleration and knee linear acceleration were substantial and opposite in effect. Other inertial and the gravitational moments were negligible. Muscle moments slowed and reversed joint motions, and active muscle force components of muscle moments were derived from lengthening of active musculotendinous units. Segmental interactions, in which proximal segment motion augmented distal segment velocity, increased the effectiveness of PSR steady-state cycles by facilitating the generation of extremely large paw linear accelerations. Limb oscillations during PSR steady-state result from interactions between muscle synergies and motion-dependent limb dynamics. At the ankle, muscle activity functioned to control paw acceleration, whereas at the knee, muscle activity functioned to control leg and paw inertial interactions.(ABSTRACT TRUNCATED AT 400 WORDS)


1986 ◽  
Vol 14 (3-4) ◽  
pp. 321-326 ◽  
Author(s):  
E.J.H. Mulder ◽  
A. Kamstra ◽  
M.J. O'Brien ◽  
G.H.A. Visser ◽  
H.F.R. Prechtl

Sign in / Sign up

Export Citation Format

Share Document