random boolean networks
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 19)

H-INDEX

21
(FIVE YEARS 1)

Author(s):  
Luca Agostini

Random Boolean networks, originally introduced as simplified models for the genetic regulatory networks, are abstract models widely applied for the study of the dynamical behaviors of self-organizing complex systems. In these networks, connectivity and the bias of the Boolean functions are the most important factors that can determine the behavioral regime of the systems. On the other hand, it has been found that topology and some structural elements of the networks such as the reciprocity, self-loops and source nodes, can have relevant effects on the dynamical properties of critical Boolean networks. In this paper, we study the impact of source and sink nodes on the dynamics of homogeneous and heterogeneous Boolean networks. Our research shows that an increase of the source nodes causes an exponentially growing of the different behaviors that the system can exhibit regardless of the network topology, while the amount of order seems to undergo modifications depending on the topology of the system. Indeed, with the increase of the source nodes the orderliness of the heterogeneous networks also increases, whereas it diminishes in the homogeneous ones. On the other hand, although the sink nodes seem not to have effects on the dynamic of the homogeneous networks, for the heterogeneous ones we have found that an increase of the sinks gives rise to an increasing of the order, although the different potential behaviors of the system remains approximately the same.


2021 ◽  
Author(s):  
Ajay Subbaroyan ◽  
Olivier C. Martin ◽  
Areejit Samal

The properties of random Boolean networks as models of gene regulation have been investigated extensively by the statistical physics community. In the past two decades, there has been a dramatic increase in the reconstruction and analysis of Boolean models of biological networks. In such models, neither network topology nor Boolean functions (or logical update rules) should be expected to be random. In this contribution, we focus on biologically meaningful types of Boolean functions, and perform a systematic study of their preponderance in gene regulatory networks. By applying the k[P] classification based on number of inputs k and bias P of functions, we find that most Boolean functions astonishingly have odd bias in a reference biological dataset of 2687 functions compiled from published models. Subsequently, we are able to explain this observation along with the enrichment of read-once functions (RoFs) and its subset, nested canalyzing functions (NCFs), in the reference dataset in terms of two complexity measures: Boolean complexity based on string lengths in formal logic which is yet unexplored in the biological context, and the average sensitivity. Minimizing the Boolean complexity naturally sifts out a subset of odd-biased Boolean functions which happen to be the RoFs. Finally, we provide an analytical proof that NCFs minimize not only the Boolean complexity, but also the average sensitivity in their k[P] set.


2021 ◽  
pp. 1-26
Author(s):  
Barbora Hudcová ◽  
Tomáš Mikolov

Abstract In order to develop systems capable of artificial evolution, we need to identify which systems can produce complex behavior. We present a novel classification method applicable to any class of deterministic discrete space and time dynamical systems. The method is based on classifying the asymptotic behavior of the average computation time in a given system before entering a loop. We were able to identify a critical region of behavior that corresponds to a phase transition from ordered behavior to chaos across various classes of dynamical systems. To show that our approach can be applied to many different computational systems, we demonstrate the results of classifying cellular automata, Turing machines, and random Boolean networks. Further, we use this method to classify 2D cellular automata to automatically find those with interesting, complex dynamics. We believe that our work can be used to design systems in which complex structures emerge. Also, it can be used to compare various versions of existing attempts to model open-ended evolution (Channon, 2006; Ofria & Wilke, 2004; Ray, 1991).


2021 ◽  
Vol 7 (29) ◽  
pp. eabf8124
Author(s):  
Jordan C. Rozum ◽  
Jorge Gómez Tejeda Zañudo ◽  
Xiao Gan ◽  
Dávid Deritei ◽  
Réka Albert

We present new applications of parity inversion and time reversal to the emergence of complex behavior from simple dynamical rules in stochastic discrete models. Our parity-based encoding of causal relationships and time-reversal construction efficiently reveal discrete analogs of stable and unstable manifolds. We demonstrate their predictive power by studying decision-making in systems biology and statistical physics models. These applications underpin a novel attractor identification algorithm implemented for Boolean networks under stochastic dynamics. Its speed enables resolving a long-standing open question of how attractor count in critical random Boolean networks scales with network size and whether the scaling matches biological observations. Via 80-fold improvement in probed network size (N = 16,384), we find the unexpectedly low scaling exponent of 0.12 ± 0.05, approximately one-tenth the analytical upper bound. We demonstrate a general principle: A system’s relationship to its time reversal and state-space inversion constrains its repertoire of emergent behaviors.


2021 ◽  
Author(s):  
Basak Kocaoglu ◽  
William Alexander

Degeneracy, the ability of structurally different elements to perform similar functions, is a property of many biological systems. Systems exhibiting a high degree of degeneracy continue to exhibit the same macroscopic behavior following a lesion even though the underlying network dynamics are significantly different. Degeneracy thus suggests how biological systems can thrive despite changes to internal and external demands. Although degeneracy is a feature of network topologies and seems to be implicated in a wide variety of biological processes, research on degeneracy in biological networks is mostly limited to weighted networks (e.g., neural networks). To date, there has been no extensive investigation of information theoretic measures of degeneracy in other types of biological networks. In this paper, we apply existing approaches for quantifying degeneracy to random Boolean networks used for modeling biological gene regulatory networks. Using random Boolean networks with randomly generated rulesets to generate synthetic gene expression data sets, we systematically investigate the effect of network lesions on measures of degeneracy. Our results are comparable to measures of degeneracy using weighted networks, and this suggests that degeneracy measures may be a useful tool for investigating gene regulatory networks.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 792 ◽  
Author(s):  
Mario Franco ◽  
Octavio Zapata ◽  
David A. Rosenblueth ◽  
Carlos Gershenson

We propose quantum Boolean networks, which can be classified as deterministic reversible asynchronous Boolean networks. This model is based on the previously developed concept of quantum Boolean functions. A quantum Boolean network is a Boolean network where the functions associated with the nodes are quantum Boolean functions. We study some properties of this novel model and, using a quantum simulator, we study how the dynamics change in function of connectivity of the network and the set of operators we allow. For some configurations, this model resembles the behavior of reversible Boolean networks, while for other configurations a more complex dynamic can emerge. For example, cycles larger than 2N were observed. Additionally, using a scheme akin to one used previously with random Boolean networks, we computed the average entropy and complexity of the networks. As opposed to classic random Boolean networks, where “complex” dynamics are restricted mainly to a connectivity close to a phase transition, quantum Boolean networks can exhibit stable, complex, and unstable dynamics independently of their connectivity.


2020 ◽  
Author(s):  
Michele Braccini ◽  
Andrea Roli ◽  
Marco Villani ◽  
Roberto Serra

Abstract In this work, we explore the properties of a control mechanism exerted on random Boolean networks that takes inspiration from the methylation mechanisms in cell differentiation and consists in progressively freezing (i.e. clamping to 0) some nodes of the network. We study the main dynamical properties of this mechanism both theoretically and in simulation. In particular, we show that when applied to random Boolean networks, it makes it possible to attain dynamics and path dependence typical of biological cells undergoing differentiation.


2020 ◽  
Vol 14 (5) ◽  
pp. 657-674
Author(s):  
Sidney Pontes-Filho ◽  
Pedro Lind ◽  
Anis Yazidi ◽  
Jianhua Zhang ◽  
Hugo Hammer ◽  
...  

Abstract Although deep learning has recently increased in popularity, it suffers from various problems including high computational complexity, energy greedy computation, and lack of scalability, to mention a few. In this paper, we investigate an alternative brain-inspired method for data analysis that circumvents the deep learning drawbacks by taking the actual dynamical behavior of biological neural networks into account. For this purpose, we develop a general framework for dynamical systems that can evolve and model a variety of substrates that possess computational capacity. Therefore, dynamical systems can be exploited in the reservoir computing paradigm, i.e., an untrained recurrent nonlinear network with a trained linear readout layer. Moreover, our general framework, called EvoDynamic, is based on an optimized deep neural network library. Hence, generalization and performance can be balanced. The EvoDynamic framework contains three kinds of dynamical systems already implemented, namely cellular automata, random Boolean networks, and echo state networks. The evolution of such systems towards a dynamical behavior, called criticality, is investigated because systems with such behavior may be better suited to do useful computation. The implemented dynamical systems are stochastic and their evolution with genetic algorithm mutates their update rules or network initialization. The obtained results are promising and demonstrate that criticality is achieved. In addition to the presented results, our framework can also be utilized to evolve the dynamical systems connectivity, update and learning rules to improve the quality of the reservoir used for solving computational tasks and physical substrate modeling.


Sign in / Sign up

Export Citation Format

Share Document