The use of permitted additives and heat‐treatment to optimize the heat‐stability of skim milk and concentrated skim milk

1980 ◽  
Vol 33 (3) ◽  
pp. 101-105 ◽  
Author(s):  
A. W. M. Sweetsur ◽  
D. D. Muir
2021 ◽  
Vol 112 ◽  
pp. 106342
Author(s):  
Jianfeng Wu ◽  
Simin Chen ◽  
Ali Sedaghat Doost ◽  
Qurrotul A’yun ◽  
Paul Van der Meeren

1978 ◽  
Vol 45 (1) ◽  
pp. 47-52 ◽  
Author(s):  
C. Holt ◽  
D. D. Muir ◽  
A. W. M. Sweetsur

SummaryThe addition of simple aldehydes brought about large increases in the heat stability of both skim-milk and concentrated skim-milk over a comparatively wide milk–pH range. The coagulation time–pH minima of type A milks were completely removed by aldehyde treatment. Some sugars, which react readily as aldehydes on heating, were also shown to stabilize concentrated milk to prolonged heat treatment at 120 °C.


2021 ◽  
pp. 106757
Author(s):  
Jianfeng Wu ◽  
Simin Chen ◽  
Teng Wang ◽  
Hao Li ◽  
Ali Sedaghat Doost ◽  
...  

1980 ◽  
Vol 47 (3) ◽  
pp. 327-335 ◽  
Author(s):  
A. W. Maurice Sweetsur ◽  
D. Donald Muir

SUMMARYAn examination has been made of the heat stability characteristics of skim-milk concentrate prepared by ultrafiltration (UF). Concentrate prepared by UF was found to be more stable than that prepared by conventional evaporation. In contrast to conventional concentrate, the heat stability of UF concentrate was not appreciably affected by forewarming or addition of permitted stabilizers, but the effect of addition of urea was generally the same for both UF and conventional concentrates; an increase in heat stability was obtained if the milk total solids level was less than 14%. As with conventional concentrate, addition of simple aldehydes induced large increases in the heat stability of UF concentrate. It is suggested that a novel range of sterile milk products could be prepared from UF concentrates. Because of the high protein and low lactose contents of these concentrates, the products might be nutritionally more attractive than those prepared from conventional concentrates.


2018 ◽  
Vol 71 (3) ◽  
pp. 601-612 ◽  
Author(s):  
Joseph Dumpler ◽  
Felicitas Peraus ◽  
Verena Depping ◽  
Bryndís Stefánsdóttir ◽  
Martin Grunow ◽  
...  

1979 ◽  
Vol 46 (2) ◽  
pp. 401-405 ◽  
Author(s):  
Nripendra C. Ganguli

SUMMARYBuffalo skim-milk is less heat stable than cow skim-milk. Interchanging ultracentrifugal whey (UCW) and milk diffusate with micellar casein caused significant changes in the heat stability of buffalo casein micelles (BCM) and cow casein micelles (CCM). Buffalo UCW dramatically destabilized COM, whereas buffalo diffu-sate with CCM exhibited the highest heat stability.Cow κ-casein stabilizes αs-casein against precipitation by Ca better than buffalo º-casein. About 90% of αs-casein could be stabilized by κ: αs ratios of 0·20 and 0·231 for cow and buffalo, respectively.Sialic acid release from micellar κ-casein by rennet was higher than from acid κ-casein in both buffalo and cow caseins, the release being slower in buffalo. The released macropeptide from buffalo κ-casein was smaller than that from cow κ-casein as revealed by Sephadex gel filtration.Sub-units of BCM have less sialic acid (1·57mg/g) than whole micelles (2·70mg/g). On rennet action, 47% of bound sialic acid was released from sub-units as against 85% from whole micelles. The sub-micelles are less heat stable than whole micelles. Among ions tested, added Ca reduced heat stability more dramatically in whole micelles, whereas added phosphate improved the stability of micelles and, more strikingly, of sub-micelles. Citrate also improved the heat stability of sub-micelles but not of whole micelles.


1983 ◽  
Vol 46 (6) ◽  
pp. 530-532 ◽  
Author(s):  
DANA W. WISEMAN ◽  
RHONÁS. APPLEBAUM ◽  
ROBERT E. BRACKETT ◽  
ELMER H. MARTH

Milk, naturally contaminated with aflatoxin M1 (AFM1) was separated with a hand-operated separator. Distribution of AFM1 paralleled the partitioning of whole milk into cream and skim milk. Most of the whole milk was recovered as skim milk, which also contained most of the AFM1. Cream accounted for 5–15% of the amount of whole milk and had 2–14% of AFM1 that originally occurred in whole milk. Cream and skim milk were pasteurized at 64°C for 30 min, AFM1 was stable in both products given this heat treatment.


1980 ◽  
Vol 43 (5) ◽  
pp. 376-380 ◽  
Author(s):  
R. S. SINGH ◽  
B. RANGANATHAN

Three Escherichia coli cultures (0111:B4, 0127:B8 and NP) were selected to study their heat-resistant characteristics when in cow skim, cow whole and buffalo whole milk. The temperatures of heat-treatment included in this study were 50, 55, 60 and 63 C. The time interval during heat-treatment was 10 min at 50 and 55 C and 5 min at 60 and 63 C. Marked differences in heat-resistance were observed in the three E. coli cultures. The z-values obtained for strain 0111:B4 were 8.3, 9.0 and 10.2 when tested in cow skim milk, cow whole milk and buffalo milk, respectively. The z-values for 0127:B8 and NP were 17.5, 18.0 and 19.2 and 18.8, 19.0 and 20.3, respectively, for the three types of milk.


Sign in / Sign up

Export Citation Format

Share Document