Regulation of dopamine D1-receptor activation in vivo by protein phosphatase 2B (calcineurin)

2004 ◽  
Vol 90 (4) ◽  
pp. 865-873 ◽  
Author(s):  
Mella Adlersberg ◽  
Shu-chi Hsiung ◽  
Sara B. Glickstein ◽  
Kuo-peing Liu ◽  
Hadassah Tamir ◽  
...  
2020 ◽  
Author(s):  
Stephanie C. Gantz ◽  
Maria M. Ortiz ◽  
Andrew J. Belilos ◽  
Khaled Moussawi

SUMMARYUltrapotent chemogenetics, including the chloride-permeable inhibitory PSAM4-GlyR receptor, were recently proposed as a powerful strategy to selectively control neuronal activity in awake, behaving animals. We aimed to validate the inhibitory function of PSAM4-GlyR in dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) in the ventral striatum. Activation of PSAM4-GlyR with the uPSEM792 ligand enhanced rather than suppressed the activity of D1-MSNs in vivo as indicated by increased c-fos expression in D1-MSNs. Whole-cell recordings in mouse brain slices showed that activation of PSAM4-GlyR did not inhibit firing of action potentials in D1-MSNs. Activation of PSAM4-GlyR depolarized D1-MSNs, attenuated GABAergic inhibition, and shifted the reversal potential of PSAM4-GlyR current to more depolarized potentials, perpetuating the depolarizing effect of receptor activation. The data show that ‘inhibitory’ PSAM4-GlyR chemogenetics may actually activate certain cell types, and highlight the pitfalls of utilizing chloride conductances to inhibit neurons.


1992 ◽  
Vol 267 (25) ◽  
pp. 17780-17786
Author(s):  
N.J. Pollock ◽  
A.M. Manelli ◽  
C.W. Hutchins ◽  
M.E. Steffey ◽  
R.G. MacKenzie ◽  
...  

Synapse ◽  
2008 ◽  
Vol 62 (7) ◽  
pp. 534-543 ◽  
Author(s):  
H.Y. Lee ◽  
N. Naha ◽  
S.P. Li ◽  
M.J. Jo ◽  
M.L. Naseer ◽  
...  

2009 ◽  
Vol 57 (4) ◽  
pp. 392-402 ◽  
Author(s):  
Manon Lebel ◽  
Christian Patenaude ◽  
Julie Allyson ◽  
Guy Massicotte ◽  
Michel Cyr

Sign in / Sign up

Export Citation Format

Share Document