scholarly journals RNA interference targeting protein tyrosine phosphatase ζ/receptor-type protein tyrosine phosphatase β suppresses glioblastoma growth in vitro and in vivo

2006 ◽  
Vol 98 (5) ◽  
pp. 1497-1506 ◽  
Author(s):  
Ulrike Ulbricht ◽  
Carmen Eckerich ◽  
Regina Fillbrandt ◽  
Manfred Westphal ◽  
Katrin Lamszus
2003 ◽  
Vol 23 (15) ◽  
pp. 5460-5471 ◽  
Author(s):  
Hila Toledano-Katchalski ◽  
Zohar Tiran ◽  
Tal Sines ◽  
Gidi Shani ◽  
Shira Granot-Attas ◽  
...  

ABSTRACT cyt-PTPε is a naturally occurring nonreceptor form of the receptor-type protein tyrosine phosphatase (PTP) epsilon. As such, cyt-PTPε enables analysis of phosphatase regulation in the absence of extracellular domains, which participate in dimerization and inactivation of the receptor-type phosphatases receptor-type protein tyrosine phosphatase alpha (RPTPα) and CD45. Using immunoprecipitation and gel filtration, we show that cyt-PTPε forms dimers and higher-order associations in vivo, the first such demonstration among nonreceptor phosphatases. Although cyt-PTPε readily dimerizes in the absence of exogenous stabilization, dimerization is increased by oxidative stress. Epidermal growth factor receptor stimulation can affect cyt-PTPε dimerization and tyrosine phosphorylation in either direction, suggesting that cell surface receptors can relay extracellular signals to cyt-PTPε, which lacks extracellular domains of its own. The inactive, membrane-distal (D2) phosphatase domain of cyt-PTPε is a major contributor to intermolecular binding and strongly interacts in a homotypic manner; the presence of D2 and the interactions that it mediates inhibit cyt-PTPε activity. Intermolecular binding is inhibited by the extreme C and N termini of D2. cyt-PTPε lacking these regions constitutively dimerizes, and its activities in vitro towards para-nitrophenylphosphate and in vivo towards the Kv2.1 potassium channel are markedly reduced. We conclude that physiological signals can regulate dimerization and phosphorylation of cyt-PTPε in the absence of direct interaction between the PTP and extracellular molecules. Furthermore, dimerization can be mediated by the D2 domain and does not strictly require the presence of PTP extracellular domains.


2021 ◽  
Vol 297 (4) ◽  
pp. 101131
Author(s):  
Jarmila Kralova ◽  
Nataliia Pavliuchenko ◽  
Matej Fabisik ◽  
Kristyna Ilievova ◽  
Frantisek Spoutil ◽  
...  

1994 ◽  
Vol 14 (8) ◽  
pp. 5523-5532
Author(s):  
D R Stover ◽  
K A Walsh

We describe a potential regulatory mechanism for the transmembrane protein-tyrosine phosphatase CD45. Phosphorylation on both tyrosine and serine residues in vitro results in an activation of CD45 specifically toward one artificial substrate but not another. The activation of these kinases appears to be order dependent, as it is enhanced when phosphorylation of tyrosine precedes that of serine but phosphorylation in the reverse order yields no activation. Any of four protein-tyrosine kinases tested, in combination with the protein-serine/threonine kinase, casein kinase II, was capable of mediating this activation in vitro. The time course of phosphorylation of CD45 in response to T-cell activation is consistent with the possibility that this regulatory mechanism is utilized in vivo.


ChemMedChem ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. 815-826 ◽  
Author(s):  
Stefanie Grosskopf ◽  
Chris Eckert ◽  
Christoph Arkona ◽  
Silke Radetzki ◽  
Kerstin Böhm ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
pp. e000285 ◽  
Author(s):  
Wenjie Zhang ◽  
Yang Liu ◽  
Zhongyi Yan ◽  
Hui Yang ◽  
Wei Sun ◽  
...  

BackgroundWe have previously discovered a relationship between the low expression of protein tyrosine phosphatase, receptor type O (PTPRO) in tumor-infiltrating T cells and immunosuppression. The aim of the present study was to investigate the relationship between decreased PTPRO and increased programmed death ligand 1 (PD-L1) in both the peripheral monocytes and tumor-infiltrating macrophages of human hepatocellular carcinoma (HCC).MethodsThe expression and correlation of all the indices were explored in monocytes and tumor-infiltrating macrophages within both human and mice HCC. The mechanic regulations were studied by using both in vitro and in vivo studies.ResultsWe found a significant decrease in PTPRO in HCC peripheral monocytes that was associated with increased PD-L1 expression in peripheral monocytes and tumor-associated macrophages (TAMs) in HCC. Monocyte PD-L1 and PTPRO therefore could serve as valuable prognostic indicators for post-surgery patients with HCC and were associated with increased T-cell exhaustion (Tim3+T cells). A depletion of PTPRO promoted PD-L1 secretion in both monocytes and macrophages through the JAK2/STAT1 and JAK2/STAT3/c-MYC pathways. Increased IL-6 expression was associated with activation of JAK2/STAT3/c-MYC and with decreased PTPRO expression through the STAT3/c-MYC/miR-25–3 p axis. Monocytes and TAMs showed significantly increased miR-25–3 p expression, which could target the 3′ untranslated region of PTPRO. The miR-25–3 p expression positively correlated with serum IL-6 levels, but inversely correlated with PTPRO in HCC monocytes. IL-6/STAT3/c-MYC activation enhanced in vitro miR-25–3 p transcription and decreased PTPRO, while further promoting PD-L1 secretion. Adoptive cell transfer of c-MYC/miR-25–3 p–modified monocytes promoted tumor growth by downregulating PTPRO and causing a PD-L1–induced immunosuppression in an orthotopic tumor transplantation model.ConclusionsIncreased serum IL-6 downregulated PTPRO expression in HCC monocytes and macrophages by activating STAT3/c-MYC/miR-25–3 p and by further enhancing PD-L1 expression through JAK2/STAT1 and JAK2/STAT3/c-MYC signaling.


Sign in / Sign up

Export Citation Format

Share Document