Role of casein on induction and enhancement of production of a bacterial milk clotting protease from an indigenously isolated Bacillus subtilis

2008 ◽  
Vol 46 (5) ◽  
pp. 513-518 ◽  
Author(s):  
K. Dutt ◽  
G.K. Meghwanshi ◽  
P. Gupta ◽  
R.K. Saxena
2021 ◽  
Vol 4 (2) ◽  
pp. e257
Author(s):  
Jermen Mamo ◽  
Martin Kangwa ◽  
Hector-Marcelo Fernandez-Lahore ◽  
Fassil Assefa

This study focused on the production and partial characterization of a milk-clotting protease produced by Bacillus subtilis SMDFS 2B in submerged cultures, under partially optimized conditions. The crude enzyme was recovered in the culture supernatant and concentrate was produced after cell removal and subsequent dialysis. Inhibition studies were conducted employing four distinct protease inhibitors: Pepstatin-A, Phenylmethane-sulphonyl-fluoride (PMSF), Ethylenediaminetetraacetic acid (EDTA), and iodoacetamide (IA). The effect of temperature, pH, metal ions and substrate concentration on milk-clotting activity were also evaluated. The thermal stability of the enzyme was determined by incubating the crude enzyme at a temperature value ranging from 35 oC to 60 oC. Similarly, pH stability was determined at pH values ranging between 4.5 and 8.0. The highest milk-clotting activity was observed at a temperature of 55 oC and pH 5.5. The crude enzyme preparation remained stable on incubation at 35 oC and 40 oC for 15 min and at pH 5.5. The enzyme also showed the lowest residual milk-clotting activity in the presence of EDTA (7.94%) and Pepstatin-A (26.71%). The addition of Mg2+ and Mn2+ significantly increased milk-clotting activity. The enzyme also showed an elevation in its apparent milk-clotting activity upon increasing the substrate (skim-milk) concentration. Thus, the milk-clotting protease produced by B. subtilis SMDFS 2B by submerged fermentation revealed some interesting milk-clotting characteristics. This may open the way for applications in the food and dairy industries.


2009 ◽  
Vol 158 (3) ◽  
pp. 761-772 ◽  
Author(s):  
Kakoli Dutt ◽  
Pritesh Gupta ◽  
Saurabh Saran ◽  
Swati Misra ◽  
Rajendra Kumar Saxena

2021 ◽  
Vol 9 (5) ◽  
pp. 1046
Author(s):  
Inam Ul Haq ◽  
Sabine Brantl

Moonlighting proteins are proteins with more than one function. During the past 25 years, they have been found to be rather widespread in bacteria. In Bacillus subtilis, moonlighting has been disclosed to occur via DNA, protein or RNA binding or protein phosphorylation. In addition, two metabolic enzymes, enolase and phosphofructokinase, were localized in the degradosome-like network (DLN) where they were thought to be scaffolding components. The DLN comprises the major endoribonuclease RNase Y, 3′-5′ exoribonuclease PnpA, endo/5′-3′ exoribonucleases J1/J2 and helicase CshA. We have ascertained that the metabolic enzyme GapA is an additional component of the DLN. In addition, we identified two small proteins that bind scaffolding components of the degradosome: SR1P encoded by the dual-function sRNA SR1 binds GapA, promotes the GapA-RNase J1 interaction and increases the RNase J1 activity. SR7P encoded by the dual-function antisense RNA SR7 binds to enolase thereby enhancing the enzymatic activity of enolase bound RNase Y. We discuss the role of small proteins in modulating the activity of two moonlighting proteins.


2003 ◽  
Vol 3 (8) ◽  
pp. 420-424 ◽  
Author(s):  
Hong Fan ◽  
Masaru Kitagawa ◽  
Takao Raku ◽  
Yutaka Tokiwa

2002 ◽  
Vol 184 (4) ◽  
pp. 889-894 ◽  
Author(s):  
Yi Wei ◽  
David H. Bechhofer

ABSTRACT The tet(L) gene of Bacillus subtilis confers low-level tetracycline (Tc) resistance. Previous work examining the >20-fold-inducible expression of tet(L) by Tc demonstrated a 12-fold translational induction. Here we show that the other component of tet(L) induction is at the level of mRNA stabilization. Addition of a subinhibitory concentration of Tc results in a two- to threefold increase in tet(L) mRNA stability. Using a plasmid-borne derivative of tet(L) with a large in-frame deletion of the coding sequence, the mechanism of Tc-induced stability was explored by measuring the decay of tet(L) mRNAs carrying specific mutations in the leader region. The results of these experiments, as well as experiments with a B. subtilis strain that is resistant to Tc due to a mutation in the ribosomal S10 protein, suggest different mechanisms for the effects of Tc on translation and on mRNA stability. The key role of the 5" end in determining mRNA stability was confirmed in these experiments. Surprisingly, the stability of several other B. subtilis mRNAs was also induced by Tc, which indicates that addition of Tc may result in a general stabilization of mRNA.


Sign in / Sign up

Export Citation Format

Share Document