Flight behaviour of seabirds in relation to wind direction and wing morphology

Ibis ◽  
2008 ◽  
Vol 139 (2) ◽  
pp. 221-233 ◽  
Author(s):  
LARRY B. SPEAR ◽  
DAVID G. AINLEY
2021 ◽  
Vol 288 (1956) ◽  
pp. 20210677
Author(s):  
Brett R. Aiello ◽  
Milton Tan ◽  
Usama Bin Sikandar ◽  
Alexis J. Alvey ◽  
Burhanuddin Bhinderwala ◽  
...  

The evolution of flapping flight is linked to the prolific success of insects. Across Insecta, wing morphology diversified, strongly impacting aerodynamic performance. In the presence of ecological opportunity, discrete adaptive shifts and early bursts are two processes hypothesized to give rise to exceptional morphological diversification. Here, we use the sister-families Sphingidae and Saturniidae to answer how the evolution of aerodynamically important traits is linked to clade divergence and through what process(es) these traits evolve. Many agile Sphingidae evolved hover feeding behaviours, while adult Saturniidae lack functional mouth parts and rely on a fixed energy budget as adults. We find that Sphingidae underwent an adaptive shift in wing morphology coincident with life history and behaviour divergence, evolving small high aspect ratio wings advantageous for power reduction that can be moved at high frequencies, beneficial for flight control. By contrast, Saturniidae, which do not feed as adults, evolved large wings and morphology which surprisingly does not reduce aerodynamic power, but could contribute to their erratic flight behaviour, aiding in predator avoidance. We suggest that after the evolution of flapping flight, diversification of wing morphology can be potentiated by adaptative shifts, shaping the diversity of wing morphology across insects.


1985 ◽  
Vol 63 (4) ◽  
pp. 755-761 ◽  
Author(s):  
Paul Kerlinger ◽  
Verner P. Bingman ◽  
Kenneth P. Able

Tracking radar with simultaneous visual observations was employed to study the flight behaviour of nine species of hawks during autumn migration, 1978–1979, in central New York. The predominant mode of flight for all species was thermal soaring and interthermal gliding. Although most species were seen in small flocks at some time, only Broad-winged Hawks (Buteo platypterus) could be considered flocking migrants, with most migrating in flocks < 40 individuals. Altitude of flight increased through the day as convective depth developed, with approximately 85% of all individuals flying below 1000 m. Climb rates of individuals soaring in thermals averaged 3 ms−1 and were greater than previously reported for larger soaring species. Short- to medium-distance migrants (Accipiter striatus, Falco sparverius) tended to fly at lower altitudes than longer distance migrants. The direction realized during thermal soaring was positively related to wind direction and was oriented to the southeast, a function of the prevailing northwest winds. Orientation strategy was considered to be a compromise between drift and complete compensation, resulting in an elliptical migratory flight path, probably shaped by prevailing northwest winds. Such a compromise promotes a faster and more energetically efficient migration.


Bat wing morphology is considered in relation to flight performance and flight behaviour to clarify the functional basis for eco-morphological correlations in flying animals. Bivariate correlations are presented between wing dimensions and body mass for a range of bat families and feeding classes, and principal-components analysis is used to measure overall size, wing size and wing shape. The principal components representing wing size and wing shape (as opposed to overall size) are interpreted as being equivalent to wing loading and to aspect ratio. Relative length and area of the hand-wing or wingtip are determined independently of wing size, and are used to derive a wingtip shape index, which measures the degree of roundedness or pointedness of the wingtip. The optimal wing form for bats adapted for different modes of flight is predicted by means of mechanical and aerodynamic models. We identify and model aspects of performance likely to influence flight adaptation significantly; these include selective pressures for economic forward flight (low energy per unit time or per unit distance (equal to cost of transport)), for flight at high or low speeds, for hovering, and for turning. "Turning performance is measured by two quantities: manoeuvrability, referring to the minimum space required for a turn at a given speed; and agility, relating to the rate at which a turn can be initiated. High flight speed correlates with high wing loading, good manoeuvrability is favoured by low wing loading, and turning agility should be associated with fast flight and with high wing loading. Other factors influencing wing adaptations, such as migration, flying with a foetus or young or carrying loads in flight (all of which favour large wing area), flight in cluttered environments (short wings) and modes of landing, are identified. The mechanical predictions are cast into a size-independent principal-components form, and are related to the morphology and the observed flight behaviour of different species and families of bats. In this way we provide a broadly based functional interpretation of the selective forces that influence wing morphology in bats. Measured flight speeds in bats permit testing of these predictions. Comparison of open-field free-flight speeds with morphology confirms that speed correlates with mass, wing loading and wingtip proportions as expected; there is no direct relation between speed and aspect ratio. Some adaptive trends in bat wing morphology are clear from this analysis. Insectivores hunt in a range of different ways, which are reflected in their morphology. Bats hawking high-flying insects have small, pointed wings which give good agility, high flight speeds and low cost of transport. Bats hunting for insects among vegetation, and perhaps gleaning, have very short and rounded wingtips, and often relatively short, broad wings, giving good manoeuvrability at low flight speeds. Many insectivorous species forage by ‘ flycatching ’ (perching while seeking prey) and have somewhat similar morphology to gleaners. Insectivorous species foraging in more open habitats usually have slightly longer wings, and hence lower cost of transport. Piscivores forage over open stretches of water, and have very long wings giving low flight power and cost of transport, and unusually long, rounded tips for control and stability in flight. Carnivores must carry heavy loads, and thus have relatively large wing areas; their foraging strategies consist of perching, hunting and gleaning, and wing structure is similar to that of insectivorous species with similar behaviour. Perching and hovering nectarivores both have a relatively small wing area: this surprising result may result from environmental pressure for a short wingspan or from the advantage of high speed during commuting flights; the large wingtips of these bats are valuable for lift generation in slow flight. The relation between flight morphology (as an indicator of flight behaviour) and echolocation is considered. It is demonstrated that adaptive trends in wing adaptations are predictably and closely paralleled by echolocation call structure, owing to the joint constraints of flying and locating food in different ways. Pressures on flight morphology depend also on size, with most aspects of performance favouring smaller animals. Power rises rapidly as mass increases; in smaller bats the available energy margin is greater than in larger species, and they may have a more generalized repertoire of flight behaviour. Trophic pressures related to feeding strategy and behaviour are also important, and may restrict the size ranges of different feeding classes: insectivores and primary nectarivores must be relatively small, carnivores and frugivores somewhat larger. The relation of these results to bat community ecology is considered, as our predictions may be tested through comparisons between comparable, sympatric species. Our mechanical predictions apply to all bats and to all kinds of bat communities, but other factors (for example echolocation) may also contribute to specialization in feeding or behaviour, and species separation may not be determined solely by wing morphology or flight behaviour. None the less, we believe that our approach, of identifying functional correlates of bat flight behaviour and identifying these with morphological adaptations, clarifies the eco-morphological relationships of bats.


2002 ◽  
Vol 80 (3) ◽  
pp. 450-460 ◽  
Author(s):  
Martin P Rhodes

In ecomorphological relationships, ecological similarities or overlap between species may occur with morphological similarity or overlap. Determination of morphological distinctness is thus important when relating morphology with ecology. This is the first of a series of papers investigating the ecomorphology of Microchiroptera in southeast Queensland, Australia, and in it I describe means and ranges of measurements and distinctness of wing morphology. In 21 species from this region, species means for aspect ratio (relative wing width) ranged from 4.98 to 8.25, while wing loading (mass by wing area) ranged from 4.32 to 15.9 N/m2. For these variables, each species' range (minimum–maximum) overlaps that of at least one other species, with greater overlap at lower values. Morphological overlap was frequent, owing to a consistently wide range of wing dimensions within species, with greater overlap at low aspect ratios and wing loadings where species were more closely packed. For all variables, the variance arising from the method of measurement (wing extend and trace) was less than intraspecific variance, but in many cases was similar to interspecific overlap. A proportion of the range and overlap in wing-morphology variables is attributable to measurement variance. The variance in aspect ratio was lower than in wing loading at species, genus, family, and region levels. Phylogenetic constraint on aspect ratio appears to be greater than on wing loading, particularly at the family level. At family and genus levels, aspect ratio varied less than wing loading. No overlap in aspect ratio occurred at family level. I group species into morphologically distinct units and provide predictions of the flight behaviour of these.


1995 ◽  
Vol 43 (6) ◽  
pp. 657 ◽  
Author(s):  
MP Rhodes

The wing morphology and flight performance of Phoniscus papuensis was examined to determine whether the wing morphology reflected published observations of flight behaviour and habitat preference. Wingspan and wing area were above the vespertilionid average for its mass. The wing loading and aspect ratio were below average. The wing loading is the lowest of any Australian vespertilionid. P. papuensis was able to successfully negotiate arrays of obstacles 22 cm apart 60% of the time. This ability, and the extremely broad, lightly loaded wings, afford the species unique flight characteristics which have been observed in the field and allow flight in complex, 'closed' habitats.


2020 ◽  
Author(s):  
Aline Knoblauch ◽  
Marco Thoma ◽  
Myles H. M. Menz

AbstractDespite mass movements of dragonflies being documented for decades, the influence of weather on the movement decisions and movement intensity of dragonflies has rarely been studied. Here, we investigate the influence of local weather conditions on flight behaviour of dragonflies in Europe, taking advantage of large movements of dragonflies occurring along the Baltic Sea coast of Latvia. Firstly, we performed orientation tests with individual dragonflies of two commonly captured species, Aeshna mixta and Sympetrum vulgatum, in order to determine if dragonflies showed directed flight and whether flight direction was independent from wind direction. Aeshna mixta displayed a uniform mean southward orientation (166.7°), independent from prevailing wind directions, whereas S. vulgatum did not show a uniform orientation. Secondly, we investigated the influence of weather conditions on the abundance of dragonflies captured. Behavioural differences in relation to weather conditions were observed between A. mixta and the two smaller Sympetrum species (S. vulgatum and S. sanguineum). Generally, temperature, cloud cover and wind direction were the most important predictors for migration intensity, with temperature positively influencing abundance and cloud cover negatively influencing abundance. Aeshna mixta appeared to select favourable tailwinds (northerlies), whereas hourly abundance of Sympetrum increased with more easterly winds. Our results provide important information on the influence of local weather conditions on the flight behaviour of dragonflies, as well as evidence of migration for A. mixta and most likely some Sympetrum species along the Baltic coast.


Atmosphere ◽  
1968 ◽  
Vol 6 (2) ◽  
pp. 23-38 ◽  
Author(s):  
Richmond W. Longley

Sign in / Sign up

Export Citation Format

Share Document