Assessment of sources of variance and patterns of overlap in microchiropteran wing morphology in southeast Queensland, Australia

2002 ◽  
Vol 80 (3) ◽  
pp. 450-460 ◽  
Author(s):  
Martin P Rhodes

In ecomorphological relationships, ecological similarities or overlap between species may occur with morphological similarity or overlap. Determination of morphological distinctness is thus important when relating morphology with ecology. This is the first of a series of papers investigating the ecomorphology of Microchiroptera in southeast Queensland, Australia, and in it I describe means and ranges of measurements and distinctness of wing morphology. In 21 species from this region, species means for aspect ratio (relative wing width) ranged from 4.98 to 8.25, while wing loading (mass by wing area) ranged from 4.32 to 15.9 N/m2. For these variables, each species' range (minimum–maximum) overlaps that of at least one other species, with greater overlap at lower values. Morphological overlap was frequent, owing to a consistently wide range of wing dimensions within species, with greater overlap at low aspect ratios and wing loadings where species were more closely packed. For all variables, the variance arising from the method of measurement (wing extend and trace) was less than intraspecific variance, but in many cases was similar to interspecific overlap. A proportion of the range and overlap in wing-morphology variables is attributable to measurement variance. The variance in aspect ratio was lower than in wing loading at species, genus, family, and region levels. Phylogenetic constraint on aspect ratio appears to be greater than on wing loading, particularly at the family level. At family and genus levels, aspect ratio varied less than wing loading. No overlap in aspect ratio occurred at family level. I group species into morphologically distinct units and provide predictions of the flight behaviour of these.

1995 ◽  
Vol 43 (6) ◽  
pp. 657 ◽  
Author(s):  
MP Rhodes

The wing morphology and flight performance of Phoniscus papuensis was examined to determine whether the wing morphology reflected published observations of flight behaviour and habitat preference. Wingspan and wing area were above the vespertilionid average for its mass. The wing loading and aspect ratio were below average. The wing loading is the lowest of any Australian vespertilionid. P. papuensis was able to successfully negotiate arrays of obstacles 22 cm apart 60% of the time. This ability, and the extremely broad, lightly loaded wings, afford the species unique flight characteristics which have been observed in the field and allow flight in complex, 'closed' habitats.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 80
Author(s):  
Dmitry V. Vedernikov ◽  
Alexander N. Shanygin ◽  
Yury S. Mirgorodsky ◽  
Mikhail D. Levchenkov

This publication presents the results of complex parametrical strength investigations of typical wings for regional aircrafts obtained by means of the new version of the four-level algorithm (FLA) with the modified module responsible for the analysis of aerodynamic loading. This version of FLA, as well as a base one, is focused on significant decreasing time and labor input of a complex strength analysis of airframes by using simultaneously different principles of decomposition. The base version includes four-level decomposition of airframe and decomposition of strength tasks. The new one realizes additional decomposition of alternative variants of load cases during the process of determination of critical load cases. Such an algorithm is very suitable for strength analysis and designing airframes of regional aircrafts having a wide range of aerodynamic concepts. Results of validation of the new version of FLA for a high-aspect-ratio wing obtained in this work confirmed high performance of the algorithm in decreasing time and labor input of strength analysis of airframes at the preliminary stages of designing. During parametrical design investigation, some interesting results for strut-braced wings having high aspect ratios were obtained.


2021 ◽  
Vol 9 (6) ◽  
pp. 618
Author(s):  
Huan Wang ◽  
Lizhong Wang ◽  
Yi Hong ◽  
Amin Askarinejad ◽  
Ben He ◽  
...  

The large-diameter monopiles are the most preferred foundation used in offshore wind farms. However, the influence of pile diameter and aspect ratio on the lateral bearing behavior of monopiles in sand with different relative densities has not been systematically studied. This study presents a series of well-calibrated finite-element (FE) analyses using an advanced state dependent constitutive model. The FE model was first validated against the centrifuge tests on the large-diameter monopiles. Parametric studies were performed on rigid piles with different diameters (D = 4–10 m) and aspect ratios (L/D = 3–7.5) under a wide range of loading heights (e = 5–100 m) in sands with different relative densities (Dr = 40%, 65%, 80%). The API and PISA p-y models were systematically compared and evaluated against the FE simulation results. The numerical results revealed a rigid rotation failure mechanism of the rigid pile, which is independent of pile diameter and aspect ratio. The computed soil pressure coefficient (K = p/Dσ′v) of different diameter piles at same rotation is a function of z/L (z is depth) rather than z/D. The force–moment diagrams at different deflections were quantified in sands of different relative density. Based on the observed pile–soil interaction mechanism, a simple design model was proposed to calculate the combined capacity of rigid piles.


2011 ◽  
Vol 133 (12) ◽  
Author(s):  
Cong Qi ◽  
Yurong He ◽  
Yanwei Hu ◽  
Juancheng Yang ◽  
Fengchen Li ◽  
...  

In this work, the natural convection heat transfer of Cu-gallium nanofluid in a differentially heated enclosure is investigated. A single-phase model is employed with constant or temperature-dependent properties of the fluid. The results are shown over a wide range of Grashof numbers, volume fractions of nanoparticles, and aspect ratios. The Nusselt number is demonstrated to be sensitive to the aspect ratio. It is found that the Nusselt number is more sensitive to thermal conductivity than viscosity at a low velocity (especially for a low aspect ratio and a low Grashof number), however, it is more sensitive to the viscosity than the thermal conductivity at a high velocity (high aspect ratio and high Grashof number). In addition, the evolution of velocity vectors, isotherms, and Nusselt number for a small aspect ratio is investigated.


1992 ◽  
Vol 114 (4) ◽  
pp. 593-600 ◽  
Author(s):  
Yukimaru Shimizu ◽  
Yoshiki Futaki ◽  
C. Samuel Martin

This paper describes the relationship between hydraulic losses and secondary flow within sinuous conduits with complicated bends. It has been found that the nature of secondary flow present in the bends is quite sensitive to the geometric configuration of the bend and the actual aspect ratio of the conduit section. Indeed, many different secondary flow patterns have been found to exist as the bend geometry is altered. A wide range of experiments has been conducted for various aspect ratios of a rectangular conduit with different curvatures.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kamran Kardel ◽  
Ali Khoshkhoo ◽  
Andres L. Carrano

Purpose The purpose of this paper is to investigate the effects of layer thickness, aspect ratio, part thickness and build orientation on distortion to have a better understanding of its behavior in material jetting technology. Design/methodology/approach Specimens with two layer thicknesses (14 and 28 µm) were printed in two aspect ratios (2:1) and (10:1), four thickness values (1, 2, 3 and 4 mm) and three build orientations (45d, XY and YX) and scanned with a wide-area 3D surface scanner to quantify distortion. The material used to build the test specimens was a commercially available resin, VeroWhitePlus RGD835. Findings The results of this study showed that all printed specimens by material jetting 3D printers had some level of distortion. The 1-mm thickness specimens, for both layer thicknesses of 14 µm and 28 µm, showed a wide range of anomalies including reverse coil set (RCS), reverse cross bow (RCB), cross bow (CB), wavy edge (WE) and some moderate twisting (T). Similar occurrences were observed for the 2-mm thickness specimens as there were RCS, WE, RCB and T anomalies that show the difference between the thinner specimens (1- and 2-mm) with the thicker ones (3- and 4-mm). In both 3- and 4-mm thickness specimens, there was more consistency in terms of distortion with mainly RCS and RCB anomalies. In total, six different types of flatness anomalies were found to occur with the following incidences: reverse coil set (91 specimens, 63.19%), reverse cross bow (50 specimens, 34.72%), wavy edge (23 specimens, 15.97%), twist (19 specimens, 12.50%), coil set (11 specimens, 7.64%) and cross bow (7 specimens, 4.86%). Originality/value This study expands the research on how the preprocess parameters such as layer thickness and build orientation and the geometrical parameters such as part thickness and aspect ratio cause dimensional distortion. Distortion is a pervasive consequence of the curing process in photopolymerization and explores one of the most common defects that come across in polymeric-based additive manufacturing. In addition to the characterization of the type and magnitude of distortion, the contributions of this work also include establishing the foundation for design guidelines aiming at minimizing distortion in material jetting.


2015 ◽  
Vol 31 (2) ◽  
pp. 945-968 ◽  
Author(s):  
J. J. Perez Gavilan ◽  
L. E. Flores ◽  
S. M. Alcocer

Results from an experimental series of seven full-scale confined masonry walls with height-to-length aspect ratios ( H/L) from 0.3 up to 2.2 are summarized. Results show that neither the level of axial stress nor the aspect ratio had a significant effect on lateral stiffness. Inelastic behavior of the walls, characterized by normalized stiffness degradation with ductility demand, can be estimated with good accuracy with a bilinear function for a ductility demand up to 4.5. A substantial increase in normalized shear strength was observed for walls with decreasing aspect ratio. A correction factor to the nominal cracking strength was deduced based on differences of the flexural deformations for squat and square walls. The factor was then compared to the experimental normalized strength with good agreement. A new expression for inclined cracking shear that can be used for a wide range of wall aspect ratios is proposed.


Bat wing morphology is considered in relation to flight performance and flight behaviour to clarify the functional basis for eco-morphological correlations in flying animals. Bivariate correlations are presented between wing dimensions and body mass for a range of bat families and feeding classes, and principal-components analysis is used to measure overall size, wing size and wing shape. The principal components representing wing size and wing shape (as opposed to overall size) are interpreted as being equivalent to wing loading and to aspect ratio. Relative length and area of the hand-wing or wingtip are determined independently of wing size, and are used to derive a wingtip shape index, which measures the degree of roundedness or pointedness of the wingtip. The optimal wing form for bats adapted for different modes of flight is predicted by means of mechanical and aerodynamic models. We identify and model aspects of performance likely to influence flight adaptation significantly; these include selective pressures for economic forward flight (low energy per unit time or per unit distance (equal to cost of transport)), for flight at high or low speeds, for hovering, and for turning. "Turning performance is measured by two quantities: manoeuvrability, referring to the minimum space required for a turn at a given speed; and agility, relating to the rate at which a turn can be initiated. High flight speed correlates with high wing loading, good manoeuvrability is favoured by low wing loading, and turning agility should be associated with fast flight and with high wing loading. Other factors influencing wing adaptations, such as migration, flying with a foetus or young or carrying loads in flight (all of which favour large wing area), flight in cluttered environments (short wings) and modes of landing, are identified. The mechanical predictions are cast into a size-independent principal-components form, and are related to the morphology and the observed flight behaviour of different species and families of bats. In this way we provide a broadly based functional interpretation of the selective forces that influence wing morphology in bats. Measured flight speeds in bats permit testing of these predictions. Comparison of open-field free-flight speeds with morphology confirms that speed correlates with mass, wing loading and wingtip proportions as expected; there is no direct relation between speed and aspect ratio. Some adaptive trends in bat wing morphology are clear from this analysis. Insectivores hunt in a range of different ways, which are reflected in their morphology. Bats hawking high-flying insects have small, pointed wings which give good agility, high flight speeds and low cost of transport. Bats hunting for insects among vegetation, and perhaps gleaning, have very short and rounded wingtips, and often relatively short, broad wings, giving good manoeuvrability at low flight speeds. Many insectivorous species forage by ‘ flycatching ’ (perching while seeking prey) and have somewhat similar morphology to gleaners. Insectivorous species foraging in more open habitats usually have slightly longer wings, and hence lower cost of transport. Piscivores forage over open stretches of water, and have very long wings giving low flight power and cost of transport, and unusually long, rounded tips for control and stability in flight. Carnivores must carry heavy loads, and thus have relatively large wing areas; their foraging strategies consist of perching, hunting and gleaning, and wing structure is similar to that of insectivorous species with similar behaviour. Perching and hovering nectarivores both have a relatively small wing area: this surprising result may result from environmental pressure for a short wingspan or from the advantage of high speed during commuting flights; the large wingtips of these bats are valuable for lift generation in slow flight. The relation between flight morphology (as an indicator of flight behaviour) and echolocation is considered. It is demonstrated that adaptive trends in wing adaptations are predictably and closely paralleled by echolocation call structure, owing to the joint constraints of flying and locating food in different ways. Pressures on flight morphology depend also on size, with most aspects of performance favouring smaller animals. Power rises rapidly as mass increases; in smaller bats the available energy margin is greater than in larger species, and they may have a more generalized repertoire of flight behaviour. Trophic pressures related to feeding strategy and behaviour are also important, and may restrict the size ranges of different feeding classes: insectivores and primary nectarivores must be relatively small, carnivores and frugivores somewhat larger. The relation of these results to bat community ecology is considered, as our predictions may be tested through comparisons between comparable, sympatric species. Our mechanical predictions apply to all bats and to all kinds of bat communities, but other factors (for example echolocation) may also contribute to specialization in feeding or behaviour, and species separation may not be determined solely by wing morphology or flight behaviour. None the less, we believe that our approach, of identifying functional correlates of bat flight behaviour and identifying these with morphological adaptations, clarifies the eco-morphological relationships of bats.


Author(s):  
Dominique G. Maucieri ◽  
Austin James Ashbaugh ◽  
Jessica M. Theodor

Sexual dimorphism can lead to differences in foraging style among conspecifics due to morphological differences. Within bats, maneuverability and speed of flight are influenced by wing shape and size, which may differ between sexes. Female bats gain about 30% of their body mass during pregnancy, affecting their agility and flight efficiency. To fill the same foraging niche as males, pregnant female bats would require wing size and/or shape modifications to maintain maneuverability. We investigated sexual dimorphism in bat wing morphology and how it varies among foraging guilds. Wing photos of male and female adult bats (19 species) in Canada, Belize, and Dominica were analyzed using 2D geometric morphometrics, wing loading, and aspect ratios. Nonpregnant female bats had higher wing loading than males, suggesting they are less maneuverable than males. Additionally, mass increases during pregnancy may not permit female bats to forage as male conspecifics do. Wing shape differed minimally among foraging guilds with only frugivores differing significantly, from all other guilds. Further studies should investigate how female bats forage during their reproductive cycle and determine how frugivore wings differ and whether there are individual differences in wing shape that are not consistent among bat species.


2001 ◽  
Vol 28 (1) ◽  
pp. 149-157 ◽  
Author(s):  
J L Dawe ◽  
Y Liu ◽  
C K Seah

A previously developed computer model was used to investigate the effects of a wide range of parameters applicable to concrete block masonry infilled steel frames. Height to length panel aspect ratios were varied from 0.5 to 1.5 to reflect how other parameters were affected by these values. Eight different types of parameters were studied. The method of applying horizontal load was found to have little effect. Isolation gaps between panel and beam reduced both the stiffness and strength of the infilled frame. While panel-to-column ties generated an increase in peak load, local stress concentrations caused by the ties resulted in additional deterioration of the panel. Strength was found to vary with mortar joint bond strength, with the effects being more significant at higher aspect ratios. Increasing beam stiffness increased strength for low aspect ratio frames, and increasing column stiffness had a similar effect for high aspect ratio frames. Gravity loading was beneficial in increasing shear resistance up to a limit where it caused crushing of the masonry infill. The increases in strength of infilled frames were found to be disproportionate to increases in the strength of the masonry.Key words: masonry, steel, infill, frame, analytical, variables, shear, strength, deflection, interaction.


Sign in / Sign up

Export Citation Format

Share Document