Trade-offs between longevity and pathogen resistance in Drosophila melanogaster are mediated by NF?B signaling

Aging Cell ◽  
2006 ◽  
Vol 5 (6) ◽  
pp. 533-543 ◽  
Author(s):  
Sergiy Libert ◽  
Yufang Chao ◽  
Xiaowen Chu ◽  
Scott D. Pletcher
2019 ◽  
Vol 286 (1902) ◽  
pp. 20190226 ◽  
Author(s):  
Patrick Joye ◽  
Tadeusz J. Kawecki

Resistance to pathogens is often invoked as an indirect benefit of female choice, but experimental evidence for links between father's sexual success and offspring resistance is scarce and equivocal. Two proposed mechanisms might generate such links. Under the first, heritable resistance to diverse pathogens depends on general immunocompetence; owing to shared condition dependence, male sexual traits indicate immunocompetence independently of the male's pathogen exposure. By contrast, other hypotheses (e.g. Hamilton–Zuk) assume that sexual traits only reveal heritable resistance if the males have been exposed to the pathogen. The distinction between the two mechanisms has been neglected by experimental studies. We show that Drosophila melanogaster males that are successful in mating contests (one female with two males) sire sons that are substantially more resistant to the intestinal pathogen Pseudomonas entomophila —but only if the males have themselves been exposed to the pathogen before the mating contest. By contrast, sons of males sexually successful in the absence of pathogen exposure are less resistant than sons of unsuccessful males. We detected no differences in daughters’ resistance. Thus, while sexual selection may have considerable consequences for offspring resistance, these consequences may be sex-specific. Furthermore, contrary to the ‘general immunocompetence’ hypothesis, these consequences can be positive or negative depending on the epidemiological context under which sexual selection operates.


Evolution ◽  
1996 ◽  
Vol 50 (2) ◽  
pp. 753 ◽  
Author(s):  
Adam K. Chippindale ◽  
Terence J. F. Chu ◽  
Michael R. Rose

2020 ◽  
Vol 29 (14) ◽  
pp. 2661-2675 ◽  
Author(s):  
Rafael A. Homem ◽  
Bliss Buttery ◽  
Ewan Richardson ◽  
Yao Tan ◽  
Linda M. Field ◽  
...  

Heredity ◽  
2003 ◽  
Vol 90 (2) ◽  
pp. 195-202 ◽  
Author(s):  
A R Anderson ◽  
J E Collinge ◽  
A A Hoffmann ◽  
M Kellett ◽  
S W McKechnie

2016 ◽  
Vol 12 (7) ◽  
pp. 20160379 ◽  
Author(s):  
Jacqueline Le Vinh Thuy ◽  
John M. VandenBrooks ◽  
Michael J. Angilletta

We studied the evolution of developmental plasticity in populations of Drosophila melanogaster that evolved at either constant or fluctuating temperatures. Consistent with theory, genotypes that evolved at a constant 16°C or 25°C performed best when raised and tested at that temperature. Genotypes that evolved at fluctuating temperatures performed well at either temperature, but only when raised and tested at the same temperature. Our results confirm evolutionary patterns predicted by theory, including a loss of plasticity and a benefit of specialization in constant environments.


2016 ◽  
Vol 12 (4) ◽  
pp. 20160105 ◽  
Author(s):  
David C. S. Filice ◽  
Tristan A. F. Long

In Drosophila melanogaster , prolonged exposure to males reduces the longevity and fecundity of females. This harm arises from the effects of male courtship behaviours and the toxic side effects of the accessory gland proteins (Acps) in their seminal fluids. Here, we examine the relationship between male exposure and its harmful effect on the lifetime fitness of his mates, and quantify the genetic basis for this variation. We found significant additive genetic variation in the magnitude of harm that males impose on females by exposing females to males from a variety of hemiclonal backgrounds for either a brief or prolonged period of time and measuring their fecundity, a meaningful fitness index. Furthermore, we discovered a strong negative correlation between the magnitude of harm and the short-term effects of male exposure on female fitness. We discuss the evolutionary significance of these results with regards to potential life-history trade-offs in females, and its relationship to male body size.


Author(s):  
M. Timothy Rabanus-Wallace ◽  
Bernd Hackauf ◽  
Martin Mascher ◽  
Thomas Lux ◽  
Thomas Wicker ◽  
...  

AbstractWe present a chromosome-scale annotated assembly of the rye (Secale cereale L. inbred line ‘Lo7’) genome, which we use to explore Triticeae genomic evolution, and rye’s superior disease and stress tolerance. The rye genome shares chromosome-level organization with other Triticeae cereals, but exhibits unique retrotransposon dynamics and structural features. Crop improvement in rye, as well as in wheat and triticale, will profit from investigations of rye gene families implicated in pathogen resistance, low temperature tolerance, and fertility control systems for hybrid breeding. We show that rye introgressions in wheat breeding panels can be characterised in high-throughput to predict the yield effects and trade-offs of rye chromatin.


2020 ◽  
Author(s):  
Faucher Christian ◽  
Mazana Vincent ◽  
Kardacz Marion ◽  
Parthuisot Nathalie ◽  
Ferdy Jean-Baptiste ◽  
...  

AbstractDuring an infection, parasites face a succession of challenges, each decisive for disease outcome. The diversity of challenges requires a series of parasite adaptations to successfully multiply and transmit from host to host. Thus, the pathogen genotypes which succeed during one step might be counter-selected in later stages of the infection. Using the bacteria Xenorhabdus nematophila and adult Drosophila melanogaster as hosts, we showed that such step-specific adaptations, here linked to GASP mutations in the X. nematophila master gene regulator lrp, exist and can trade-off with each other. We found that nonsense lrp mutations had lowered ability to resist the host immune response, while all classes of mutations in lrp were associated with a decrease in the ability to proliferate during early infection. We demonstrate that reduced proliferation of X. nematophila best explains diminished virulence in this infection model. Finally, decreased proliferation during the first step of infection is accompanied with improved proliferation during late infection, suggesting a trade-off between the adaptations to each step. Step-specific adaptations could play a crucial role in the chronic phase of infections in any diseases that show similar small colony variants (also known as SCV) to X. nematophila.ImportanceWithin-host evolution has been described in many bacterial diseases, and the genetic basis behind the adaptations stimulated a lot of interest. Yet, the studied adaptations are generally focused on antibiotic resistance, rarely on the adaptation to the environment given by the host, and the potential trade-off hindering adaptations to each step of the infection are rarely considered. Those trade-offs are key to understand intra-host evolution, and thus the dynamics of the infection. However, the understanding of these trade-offs supposes a detailed study of host-pathogen interactions at each step of the infection process, with for each step an adapted methodology. Using Drosophila melanogaster as host and the bacteria Xenorhabdus nematophila, we investigated the bacterial adaptations resulting from GASP mutations known to induce small colony variant (SCV) phenotype positively selected within-the-host over the course of an infection, and the trade-off between step-specific adaptations.


Sign in / Sign up

Export Citation Format

Share Document