A review of the role of excess soil moisture conditions in constraining farm practices under Atlantic conditions

2012 ◽  
Vol 28 (4) ◽  
pp. 580-589 ◽  
Author(s):  
R. P. O. Schulte ◽  
R. Fealy ◽  
R. E. Creamer ◽  
W. Towers ◽  
T. Harty ◽  
...  
2007 ◽  
Vol 17 (2) ◽  
pp. 91-98 ◽  
Author(s):  
Ana Vigliocco ◽  
Sergio Alemano ◽  
Otto Miersch ◽  
Daniel Alvarez ◽  
Guillermina Abdala

AbstractIn this study, we characterized two sunflower (Helianthus annuus L.) lines with differential sensitivity to drought, the sensitive line B59 and the tolerant line B71. Using both lines, we compared the content of endogenous jasmonates (JAs) in dry and imbibed seeds from plants grown under irrigation and drought. Jasmonic acid (JA), 12-oxo-phytodienoic acid (OPDA), 11-hydroxyjasmonate (11-OH-JA) and 12-hydroxyjasmonate (12-OH-JA) were detected in dry and imbibed sunflower seeds. Seeds from plants grown under drought had a lower content of total JAs and exhibited higher germination percentages than seeds from irrigated plants, demonstrating that environmental conditions have a strong influence on the progeny. OPDA and 12-OH-JA were the main compounds found in dry seeds of both lines. Imbibed seeds showed an enhanced amount of total JAs with respect to dry seeds produced by plants grown in both soil moisture conditions. Imbibition triggered a dramatic OPDA increase in the embryo, suggesting a role of this compound in germination. We conclude that JAs patterns vary during sunflower germination and that the environmental conditions experienced by the mother plant modify the hormonal content of the seed progeny.


2020 ◽  
Author(s):  
Clàudia Abancó ◽  
Georgina L. Bennett ◽  
Adrian J. Matthews ◽  
Mark A. Matera ◽  
Fibor J. Tan

Abstract. In 2018, Typhoon Mangkhut (locally known as Typhoon Ompong) triggered thousands of landslides in the area of Itogon (Philippines). A landslide inventory of 1101 landslides over a 570 km2 area is used to study the geomorphological characteristics and land cover more prone to landsliding as well as the rainfall and soil moisture conditions that led to widespread failure. Landslides mostly occurred in slopes covered by wooded grassland in clayey materials, predominantly facing East–Southeast. The analysis of both satellite rainfall (GPM IMERG) and soil moisture (SMAP-L4) finds that, in addition to rainfall from the typhoon, soil water content plays an important role in the triggering mechanism. Rainfall associated with Typhoon Mangkhut is compared with 33 high intensity rainfall events that did not trigger regional landslide events in 2018 and with previously published rainfall thresholds. Results show that: (a) it was one of the most intense rainfall events in the year but not the highest, and (b) despite satellite data tending to underestimate intense rainfall, previous published regional and global thresholds are to be too low to discriminate between landslide triggering and non-triggering rainfall events. This work highlights the potential of satellite products for hazard assessment and early warning in areas of high landslide activity where ground-based data is scarce.


2015 ◽  
Vol 12 (3) ◽  
pp. 3029-3058
Author(s):  
M. Rinderer ◽  
H. Komakech ◽  
D. Müller ◽  
J. Seibert

Abstract. Soil and water management is particularly relevant in semi-arid regions to enhance agricultural productivity. During periods of water scarcity soil moisture differences are important indicators of the soil water deficit and are traditionally used for allocating water resources among farmers of a village community. Here we present a simple, inexpensive soil wetness classification scheme based on qualitative indicators which one can see or touch on the soil surface. It incorporates the local farmers' knowledge on the best soil moisture conditions for seeding and brick making in the semi-arid environment of the study site near Arusha, Tanzania. The scheme was tested twice in 2014 with farmers, students and experts (April: 40 persons, June: 25 persons) for inter-rater reliability, bias of individuals and functional relation between qualitative and quantitative soil moisture values. During the test in April farmers assigned the same wetness class in 46% of all cases while students and experts agreed in about 60% of all cases. Students who had been trained in how to apply the method gained higher inter-rater reliability than their colleagues with only a basic introduction. When repeating the test in June, participants were given improved instructions, organized in small sub-groups, which resulted in a higher inter-rater reliability among farmers. In 66% of all classifications farmers assigned the same wetness class and the spread of class assignments was smaller. This study demonstrates that a wetness classification scheme based on qualitative indicators is a robust tool and can be applied successfully regardless of experience in crop growing and education level when an in-depth introduction and training is provided. The use of a simple and clear layout of the assessment form is important for reliable wetness class assignments.


2015 ◽  
Vol 19 (8) ◽  
pp. 3505-3516 ◽  
Author(s):  
M. Rinderer ◽  
H. C. Komakech ◽  
D. Müller ◽  
G. L. B. Wiesenberg ◽  
J. Seibert

Abstract. Soil and water management is particularly relevant in semi-arid regions to enhance agricultural productivity. During periods of water scarcity, soil moisture differences are important indicators of the soil water deficit and are traditionally used for allocating water resources among farmers of a village community. Here we present a simple, inexpensive soil wetness classification scheme based on qualitative indicators which one can see or touch on the soil surface. It incorporates the local farmers' knowledge on the best soil moisture conditions for seeding and brick making in the semi-arid environment of the study site near Arusha, Tanzania. The scheme was tested twice in 2014 with farmers, students and experts (April: 40 persons, June: 25 persons) for inter-rater reliability, bias of individuals and functional relation between qualitative and quantitative soil moisture values. During the test in April farmers assigned the same wetness class in 46 % of all cases, while students and experts agreed on about 60 % of all cases. Students who had been trained in how to apply the method gained higher inter-rater reliability than their colleagues with only a basic introduction. When repeating the test in June, participants were given improved instructions, organized in small subgroups, which resulted in a higher inter-rater reliability among farmers. In 66 % of all classifications, farmers assigned the same wetness class and the spread of class assignments was smaller. This study demonstrates that a wetness classification scheme based on qualitative indicators is a robust tool and can be applied successfully regardless of experience in crop growing and education level when an in-depth introduction and training is provided. The use of a simple and clear layout of the assessment form is important for reliable wetness class assignments.


2021 ◽  
Author(s):  
Anastasia Vladimirovna Makhnykina ◽  
Ivan Ivanovich Tychkov ◽  
Anatoly Stanislavovich Prokushkin ◽  
Anton Igorevich Pyzhev ◽  
Eugene Alexandrovich Vaganov

Abstract Background The soils of the boreal zone contain significant reserves of carbon, therefore, their response to current climate changes will significantly affect the sustainability of forest ecosystems and the future concentration of CO 2 in the atmosphere. When modeling soil emission, it is necessary to focus on the main soil environment factors. In this paper, a simple exponential model of the soil CO 2 emissions growth was modified by introducing an additional parameter - the threshold soil moisture in different types of ecosystems based on the direct measurements. Results The developed model adequately reflects the dynamic changes in soil emission for different types of ecosystems. This result was achieved by including moisture as a second environmental factor besides temperature, describing changes in soil CO 2 emissions during the summer period. The error of direct measurements for all measuring seasons was about 20% of the values of direct measurements of the CO 2 flux. Note that such a high error was observed once per season in early and mid-June, reaching 60-80% on some days. Our models demonstrate in the season with the highest amount of precipitation the smallest differences in modeled fluxes about 15-20%, which indirectly indicates that the emission flux is not inhibited by insufficient moisture in this season. Conclusions The final model application depends on the characteristics of the microclimatic conditions of a particular ecosystem, namely, a factor that has a limiting effect on the biological processes. When studying the functional role of boreal forest ecosystems the moisture conditions consideration is crucial to explain the atmospheric CO 2 emission processes.


2013 ◽  
Vol 14 (2) ◽  
pp. 443-459 ◽  
Author(s):  
F. M. Ralph ◽  
T. Coleman ◽  
P. J. Neiman ◽  
R. J. Zamora ◽  
M. D. Dettinger

Abstract This study is motivated by diverse needs for better forecasts of extreme precipitation and floods. It is enabled by unique hourly observations collected over six years near California’s Russian River and by recent advances in the science of atmospheric rivers (ARs). This study fills key gaps limiting the prediction of ARs and, especially, their impacts by quantifying the duration of AR conditions and the role of duration in modulating hydrometeorological impacts. Precursor soil moisture conditions and their relationship to streamflow are also shown. On the basis of 91 well-observed events during 2004–10, the study shows that the passage of ARs over a coastal site lasted 20 h on average and that 12% of the AR events exceeded 30 h. Differences in storm-total water vapor transport directed up the mountain slope contribute 74% of the variance in storm-total rainfall across the events and 61% of the variance in storm-total runoff volume. ARs with double the composite mean duration produced nearly 6 times greater peak streamflow and more than 7 times the storm-total runoff volume. When precursor soil moisture was less than 20%, even heavy rainfall did not lead to significant streamflow. Predicting which AR events are likely to produce extreme impacts on precipitation and runoff requires accurate prediction of AR duration at landfall and observations of precursor soil moisture conditions.


Author(s):  
Maurizio Lazzari ◽  
Marco Piccarreta ◽  
Salvatore Manfreda

Abstract. Rainfall-triggered shallow landslides have caused losses of human life and millions of euros in damage to property in all parts of the world. The need to prevent such phenomena combined with the difficulty to describe the geo-physical processes over large scales led to the adoption of empirical rainfall thresholds derived from the observed relationship between rainfall intensity/duration and landslide occurrence. These thresholds are generally obtained neglecting the role of the antecedent moisture conditions that should be taken into consideration. In the present manuscript, we explored the role of antecedent soil moisture on the critical rainfall intensity–duration thresholds highlighting its critical impact. Therefore, traditional approaches that neglect such parameter may have a limited value in the early-warning systems. This study was carried out using a record of 326 landslides occurred in the last 18 years in the Basilicata region (southern Italy). Besides the ordinary data (i.e. rainstorm intensity and duration), we also derived the antecedent moisture conditions using a parsimonious hydrological model.


Weed Science ◽  
1990 ◽  
Vol 38 (2) ◽  
pp. 125-128 ◽  
Author(s):  
Jon Lapham ◽  
Donald S. H. Drennan

Changes in dormancy and viability of freshly harvested seed of yellow nutsedge buried in the field, at depths of 5, 25, and 50 mm, were studied over a 2-yr period. The number of dormant, viable seed decreased most rapidly at 5 mm because more seed lost their dormancy and germinated (up to 30%) than at lower depths. Loss of viability through decay of seed appeared similar at all depths. No seedlings emerged from any depth. In a laboratory experiment, conducted in optimal soil moisture conditions, seedlings emerged from all seed that germinated, demonstrating that adequate soil moisture was critical for seedling establishment. This was substantiated in a second field experiment in which irrigation and mulching greatly increased seedling survival. The number of seedlings surviving in irrigated plots was 0.78% of seed sown and 0.03% in the rain-fed plots. The role of seed in the establishment of yellow nutsedge infestations is probably of little importance in dryland cropping areas despite the longevity and viability of the seed.


Sign in / Sign up

Export Citation Format

Share Document