Assessing the geochemical and tectonic impacts of fluid-rock interaction in mid-crustal shear zones: a case study from the intracontinental Alice Springs Orogen, central Australia

2011 ◽  
Vol 29 (8) ◽  
pp. 821-850 ◽  
Author(s):  
T. RAIMONDO ◽  
C. CLARK ◽  
M. HAND ◽  
K. FAURE
Lithos ◽  
2020 ◽  
Vol 378-379 ◽  
pp. 105817
Author(s):  
B.V. Ribeiro ◽  
J.A. Mulder ◽  
F.M. Faleiros ◽  
C.L. Kirkland ◽  
P.A. Cawood ◽  
...  

2021 ◽  
pp. 104417
Author(s):  
Maria Michail ◽  
Michael Rudolf ◽  
Matthias Rosenau ◽  
Alberto Riva ◽  
Piero Gianolla ◽  
...  

2021 ◽  
Author(s):  
Florian Fusseis ◽  
Craig Allsop

<p>Shear zones are important conduits that facilitate the bidirectional migration of fluids and dissolved solids across the middle crust. It is a relatively recent revelation that mylonitic deformation in such shear zones can result in the formation of synkinematic pores that are potentially utilised in long-range fluid migration. The pores definitely influence a shear zone’s hydraulic transport properties on the grain scale, facilitating synkinematic fluid-rock interactions and mass transfer. Our understanding of how exactly various forms of synkinematic porosity integrate with the kinematics and dynamics of shear zones is still growing. Here we show a previously undescribed form of synkinematic porosity in an unweathered, greenschist-facies psammitic ultramylonite from the Cap de Creus Northern Shear Belt (Spain). The sizeable, open pores with volumes > 50k µm3 appear exclusively next to albitic feldspar porphyroclasts, which themselves float in a fine-grained, polymineralic ultramylonitic matrix that likely deformed by grain size-sensitive creep and viscous grain boundary sliding. The pores wrap around their host clasts, occupying asymmetric strain shadows and tailing off into the mylonitic foliation. A detailed analysis using high-resolution backscatter electron imaging and non-invasive synchrotron-based x-ray microtomography confirms that the pores are isolated from each other. We found no evidence for weathering of the samples, or any significant post-mylonitic overprint, unequivocally supporting a synkinematic origin of the pores. </p><p>We propose that this strain shadow porosity formed through the rotations of the Ab porphyroclasts, which was governed by the clasts’ shapes and elongation. The ultramylonitic matrix was critical in enabling the formation of pores in the clast’s strain shadows. In the matrix, the individual grains were displaced mostly parallel to the shear direction. As a consequence of clast rotation it can be expected that, in the strain shadows, matrix grains followed diverging movement vectors. As a result, phase boundaries in the YZ plane experienced tensile forces, leading to the opening of pores. We infer that this tensile decoupling among matrix grains established a hydraulic gradient that drained the matrix locally and filled the pores with fluid. The fact that the strain shadow pores remained open in our samples suggests a chemical equilibrium with the fluid. Pore shape and volume will have been subject to continuous modification during ongoing matrix deformation and clast rotation.</p><p>This form of synkinematic porosity constitutes a puzzling, yet obvious way to maintain surprisingly large pores in ultramylonites whose transport properties are otherwise likely determined by creep cavitation and the granular fluid pump (Fusseis et al., 2009). We envisage that the strain shadow megapores worked in sync with the granular fluid pump in the ultramylonitic matrix and, while the overall porosity of ultramylonites may be small, locally, substantial fluid reservoirs were available to service fluid-rock interaction and fluid-mediated mass transfer. Our findings add another puzzle piece to our evolving understanding of synkinematic transport properties of mid-crustal ultramylonites and fluid-rock interaction in shear zones at the brittle-to-ductile transition.</p>


Author(s):  
Hans Wackernagel ◽  
Henri Sanguinetti

In geochemical prospecting for gold a major difficulty is that many values are below the chemical detection limit. Tracers for gold thus play an important role in the evaluation of multivariate geochemical data. In this case study we apply geostatistical methods presented in Wackernagel (1988) to multielement exploration data from a prospect near Limoges, France. The analysis relies upon a metallogenetic model by Bonnemaison and Marcoux (1987, 1990) describing auriferous mineralization in shear zones of the Limousin. The aim of geochemical exploration is to find deposits of raw materials. What is a deposit? It is a geological anomaly which has a significant average content of a given raw material and enough spatial extension to have economic value. The geological body denned by an anomaly is generally buried at a specific depth and may be detectable at the surface through indices. These indices, which we shall call superficial anomalies, are disposed in three manners: at isolated locations, along faults, and as dispersion halos. These two definitions of the word "anomaly" correspond to a vision of the geological phenomenon in its full continuity. Yet in exploration geochemistry only a discrete perception of the phenomenon is possible through samples taken along a regularly meshed grid. A superficial anomaly thus can be apprehended by one or several samples or it can escape the grip of the geochemist when it is located between the nodes of the mesh. A geochemical anomaly, in the strict sense, only exists at the nodes of the sampling grid and we shall distinguish between: a pointwise anomaly defined on a single sample, and a groupwise anomaly defined on several neighboring samples. This distinction is important both upstream, for the geological interpretation of geochemical measurements, and downstream, at the level of geostatistical manipulation of the data. It will condition an exploration strategy on the basis of the data representations used in this case study. A pointwise anomaly, i.e., a high, isolated value of the material being sought, will correspond either to a geological phenomenon of limited extent or to a well hidden deposit.


2019 ◽  
Vol 24 ◽  
pp. 35-44
Author(s):  
Rajeev Prasad ◽  
Nishith Sharma

Construction of underground Cavern in the Himalayan region is full of challenges and uncertainties. Experience has shown that construction in Himalayan regions requires good understanding of geology, adequate site investigations, proper design and selection of suitable construction methodology and technology. The most commonly encountered geological problems during excavation of underground structure in Hydroelectric Projects are, Fault/Thrust/Shear Zones squeezing and swelling, wedge block failure etc. Tehri Pumped Storage Plant (PSP) is located at the left bank of river Bhagirathi in the state of Uttarakhand in Northern India. This case study indicates about the geological challenges faced and their remedial measures during the construction of Tehri PSP Powerhouse Cavern having dimension of 203m x 24m x 58m.3D-geological mapping with 1:100 scales was carried out in excavated central drift of powerhouse to evaluate the rock composition, behavior of rock mass, structural features and further investigation to finalize the layout and orientation. During the investigation Sheared Phyllite with bands of thinly Phyllite Quartzite rock were encountered in the end portion of central drift of powerhouse which had posed a mammoth challenge in designing the powerhouse cavern. Keeping in view the recommendations of geotechnical experts and the design consultants, decision were made to shift the cavern further by 50 m to avoid Sheared Phyllite bands. The shifting of cavern led to the reorientation of structures like control room, service bay and location of units etc. This paper briefly describes the Engineering Geological and Geotechnical set up of powerhouse with proper investigation approaches and excavation sequences highlighting the importance of orientation and Sheared Phyllite Zone.


Sign in / Sign up

Export Citation Format

Share Document