Resilience of Native Plant Community Following Manual Control of Invasive Cinchona pubescens in Galápagos

2010 ◽  
Vol 18 ◽  
pp. 103-112 ◽  
Author(s):  
Heinke Jäger ◽  
Ingo Kowarik
Oecologia ◽  
2012 ◽  
Vol 172 (3) ◽  
pp. 823-832 ◽  
Author(s):  
Mifuyu Nakajima ◽  
Carol L. Boggs ◽  
Sallie Bailey ◽  
Jennifer Reithel ◽  
Timothy Paape

Author(s):  
Elise Buisson ◽  
Julie Braschi ◽  
Julie Chenot‐Lescure ◽  
Manon Célia Morgane Hess ◽  
Christel Vidaller ◽  
...  

2010 ◽  
Vol 3 (2) ◽  
pp. 155-168 ◽  
Author(s):  
Travis L. Almquist ◽  
Rodney G. Lym

AbstractAminopyralid efficacy on Canada thistle (Cirsium arvense) and potential to injure native species was evaluated in a restored prairie at the Glacial Ridge Preserve managed by The Nature Conservancy in Polk County, MN. Canada thistle stem density was reduced from 17 to 0.1 stems m−2 10 mo after treatment (MAT) with aminopyralid applied in the fall at 120 g ha−1. Aminopyralid also altered the composition of both Canada thistle–infested and native plant communities. Aminopyralid controlled Canada thistle and removed or reduced several undesirable forb species from the restored prairie communities, such as absinth wormwood (Artemisia absinthium) and perennial sowthistle (Sonchus arvensis). A number of high seral forbs were also reduced or removed by aminopyralid, including maximilian sunflower (Helianthus maximiliani) and purple prairie clover (Dalea purpurea). Foliar cover of high seral forbs in the native plant community was reduced from 12.2 to 7% 22 MAT. The cover of high seral grass species, such as big bluestem (Andropogon gerardii) and Indiangrass (Sorghastrum nutans) increased after aminopyralid application in both the Canada thistle–infested and native plant communities and averaged 41.4% cover compared with only 19.4% before removal of Canada thistle. Species richness, evenness, and diversity were reduced after aminopyralid application in both Canada thistle–infested and native plant communities. However, the benefits of Canada thistle control, removal of undesirable species, and the increase in native grass cover should lead to an overall improvement in the long-term stability and composition of the restored prairie plant community, which likely outweigh the short-term effects of a Canada thistle control program.


2017 ◽  
Author(s):  
Pamela Bailey ◽  
Trudy Estes ◽  
Scott Bourne ◽  
Tosin Sekoni ◽  
David Price

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 426 ◽  
Author(s):  
David J. Gibson ◽  
Lindsay A. Shupert ◽  
Xian Liu

Control of invasive exotic species in restorations without compromising the native plant community is a challenge. Efficacy of exotic species control needs to consider collateral effects on the associated plant community. We asked (1) if short-term control of a dominant exotic invasive, Lespedeza cuneata in grassland restorations allows establishment of a more diverse native plant community, and (2) if control of the exotic and supplemental seed addition allows establishment of native species. A manipulative experiment tested the effects of herbicide treatments (five triclopyr and fluroxypyr formulations plus an untreated control) and seed addition (and unseeded control) on taxonomic and phylogenetic diversity, and community composition of restored grasslands in three sites over three years. We assessed response of L. cuneata through stem density counts, and response of the plant community through estimates of canopy cover. Herbicide treatments reduced the abundance of the exotic in the first field season leading to a less dispersed community composition compared with untreated controls, with the exotic regaining dominance by the third year. Supplemental seed addition did not provide extra resistance of the native community to reinvasion of the exotic. The communities were phylogenetically over-dispersed, but there was a short-term shift to lower phylogenetic diversity in response to herbicides consistent with a decrease in biotic filtering. Native plant communities in these grassland restorations were resilient to short-term reduction in abundance of a dominant invasive even though it was insufficient to provide an establishment window for native species establishment.


2009 ◽  
Vol 2 (2) ◽  
pp. 158-165 ◽  
Author(s):  
Roger Sheley ◽  
Edward Vasquez ◽  
Carla Hoopes

AbstractManipulating plant litter to direct successional trajectories is rarely considered as a management strategy. Our objective was to determine the influence of litter from an intact native plant community on a community dominated by an invasive species within the same habitat type as well as the influence of litter from a community dominated by an invasive species on an intact native plant community. We hypothesized that litter amount, type (source), and fragment size would influence various functional groups within a native plant community differently than within a weed-dominated plant community. We used reciprocal plant litter exchanges between native and invasive plant–dominated grasslands to gain an initial understanding of litter's influence on the density and biomass of native grasses, native forbs, common St. Johnswort, and downy brome. Common St. Johnswort was not influenced by any treatment. Native grass density increased with application of low (454 g/m2) amounts of litter where the grasses were subordinate to common St. Johnswort, and adding native plant litter to the weedy site nearly doubled native grass biomass. Low amounts of finely fragmented litter and high amounts of coarse litter induced native forbs to produce about twice the biomass as found in the non–litter-amended controls. Our study suggests that plant litter may be a component of vegetation that can be managed to shift the plant community toward those plants that are desired.


Ecosphere ◽  
2017 ◽  
Vol 8 (9) ◽  
pp. e01927 ◽  
Author(s):  
Shishir Paudel ◽  
Juan C. Benavides ◽  
Beau MacDonald ◽  
Travis Longcore ◽  
Gail W. T. Wilson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document