scholarly journals Do No Harm: Efficacy of a Single Herbicide Application to Control an Invasive Shrub While Minimizing Collateral Damage to Native Species

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 426 ◽  
Author(s):  
David J. Gibson ◽  
Lindsay A. Shupert ◽  
Xian Liu

Control of invasive exotic species in restorations without compromising the native plant community is a challenge. Efficacy of exotic species control needs to consider collateral effects on the associated plant community. We asked (1) if short-term control of a dominant exotic invasive, Lespedeza cuneata in grassland restorations allows establishment of a more diverse native plant community, and (2) if control of the exotic and supplemental seed addition allows establishment of native species. A manipulative experiment tested the effects of herbicide treatments (five triclopyr and fluroxypyr formulations plus an untreated control) and seed addition (and unseeded control) on taxonomic and phylogenetic diversity, and community composition of restored grasslands in three sites over three years. We assessed response of L. cuneata through stem density counts, and response of the plant community through estimates of canopy cover. Herbicide treatments reduced the abundance of the exotic in the first field season leading to a less dispersed community composition compared with untreated controls, with the exotic regaining dominance by the third year. Supplemental seed addition did not provide extra resistance of the native community to reinvasion of the exotic. The communities were phylogenetically over-dispersed, but there was a short-term shift to lower phylogenetic diversity in response to herbicides consistent with a decrease in biotic filtering. Native plant communities in these grassland restorations were resilient to short-term reduction in abundance of a dominant invasive even though it was insufficient to provide an establishment window for native species establishment.

2010 ◽  
Vol 3 (2) ◽  
pp. 155-168 ◽  
Author(s):  
Travis L. Almquist ◽  
Rodney G. Lym

AbstractAminopyralid efficacy on Canada thistle (Cirsium arvense) and potential to injure native species was evaluated in a restored prairie at the Glacial Ridge Preserve managed by The Nature Conservancy in Polk County, MN. Canada thistle stem density was reduced from 17 to 0.1 stems m−2 10 mo after treatment (MAT) with aminopyralid applied in the fall at 120 g ha−1. Aminopyralid also altered the composition of both Canada thistle–infested and native plant communities. Aminopyralid controlled Canada thistle and removed or reduced several undesirable forb species from the restored prairie communities, such as absinth wormwood (Artemisia absinthium) and perennial sowthistle (Sonchus arvensis). A number of high seral forbs were also reduced or removed by aminopyralid, including maximilian sunflower (Helianthus maximiliani) and purple prairie clover (Dalea purpurea). Foliar cover of high seral forbs in the native plant community was reduced from 12.2 to 7% 22 MAT. The cover of high seral grass species, such as big bluestem (Andropogon gerardii) and Indiangrass (Sorghastrum nutans) increased after aminopyralid application in both the Canada thistle–infested and native plant communities and averaged 41.4% cover compared with only 19.4% before removal of Canada thistle. Species richness, evenness, and diversity were reduced after aminopyralid application in both Canada thistle–infested and native plant communities. However, the benefits of Canada thistle control, removal of undesirable species, and the increase in native grass cover should lead to an overall improvement in the long-term stability and composition of the restored prairie plant community, which likely outweigh the short-term effects of a Canada thistle control program.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Kumar Manish

Abstract Background So far, macroecological studies in the Himalaya have mostly concentrated on spatial variation of overall species richness along the elevational gradient. Very few studies have attempted to document the difference in elevational richness patterns of native and exotic species. In this study, this knowledge gap is addressed by integrating data on phylogeny and elevational distribution of species to identify the variation in species richness, phylogenetic diversity and phylogenetic structure of exotic and native plant species along an elevational gradient in the Himalaya. Results Species distribution patterns for exotic and native species differed; exotics tended to show maximum species richness at low elevations while natives tended to predominate at mid-elevations. Native species assemblages showed higher phylogenetic diversity than the exotic species assemblages over the entire elevational gradient in the Himalaya. In terms of phylogenetic structure, exotic species assemblages showed majorly phylogenetic clustering while native species assemblages were characterized by phylogenetic overdispersion over the entire gradient. Conclusions The findings of this study indicate that areas with high native species richness and phylogenetic diversity are less receptive to exotic species and vice versa in the Himalaya. Species assemblages with high native phylogenetic overdispersion are less receptive to exotic species than the phylogenetically clustered assemblages. Different ecological processes (ecological filtering in case of exotics and resource and niche competition in case of natives) may govern the distribution of exotic and native species along the elevational gradient in the Himalaya.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Brittany Harris ◽  
Ariel Freidenreich ◽  
Eric Betancourt ◽  
Krishnaswarmy Jayachandran

Abstract Background Preserving fire-dependent ecosystems can mitigate biodiversity loss from urbanization, but prescribing fire is challenging near human habitation. Consequently, dereliction of fire-dependent forests is widespread in urban fragments. Natural disturbance-based management, like prescribing fire, is gaining global acceptance, yet it is unclear what affects prolonged exclusion have on the initial regeneration of isolated plant communities immediately after fire is reintroduced. We took advantage of the first prescribed low-intensity burn on a university pine rockland nature preserve in South Florida, USA, to gain insight. We measured the changes in plant community composition and vegetation cover 1 week before the prescribed burn, and again 1, 2, and 14 weeks after to assess the early and short-term stages of recovery. Results The fire consumed substantial leaf litter, surface fuels, and canopy leaves, increasing sunlight availability to the understory and exposing bare ground. Many woody plants perished within a week post-burn, particularly invasive shrubs; however, germinating and resprouting plant growth were rapid. By 14 weeks, vegetation covered more of the ground than before the burn, although the upper canopy remained relatively open. Rarefied species richness was recovered by 14 weeks but did not exceed pre-burn levels. Invasive species richness was also maintained post-burn. Despite no overall changes in the community structure, our correspondence analysis and analysis of similarity of the plant community suggest high species turnover from the pre-burn to the final community surveyed, with an intermediate turnover in between. Conclusion The endangered pine rockland ecosystem, like many fire-dependent ecosystems, is threatened by habitat loss and fire suppression. Managing urban preserves with periodic burns is essential for supporting habitat for endemic species while decreasing demands for manual and time-intensive maintenance. Our study demonstrates that seedling recruitment from early plantings of native species can contribute significantly and immediately to restoration efforts in a fire-excluded urban preserve; however, many changes were ephemeral. Supplemental burns are likely necessary to further reduce vegetation density and sustain changes to the community composition.


2019 ◽  
Vol 28 (3) ◽  
pp. e014
Author(s):  
José Ramón Arévalo ◽  
Agustín Naranjo-Cigala ◽  
Marcos Salas-Pascual ◽  
Eva M. Padrón ◽  
Aday González-García

Aim of the study: Although introduced tree species have been recognized as adversely affecting native ecosystems, conversely, some studies suggest they can facilitate recovery and promote the establishment of native plant communities. This study tests whether a native plant community is established under the closed canopies of an exotic species by analyzing regeneration and plant species composition.Area of study: Finca de Osorio, a public property of the Cabildo de Gran Canaria included in the Doramas Rural Park (Canary Islands, Spain).Main results: The results reveal that sapling regeneration is dominated by the exotic species, though some native ones are also present. The sapling regeneration community did not differ from the tree canopy composition, so, a native plant community recovery cannot be expected to occur. In addition, other introduced species were also present in the sapling composition community.Research highlights: The laurel forest of the Canary Islands is the most emblematic plant community of the Canary Island archipelago. The studied area dominated by Q. suber does not favor the regeneration of the native plant community. Thus, restoration programs will be required to enhance the native plant community and the area covered by this highly disturbed plant ecosystem on the island of Gran Canaria.Keywords: catalytic effect; invasion; laurel forest; plant community.


2011 ◽  
Vol 4 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Rachel A. Hutchinson ◽  
Joshua H. Viers

AbstractPerennial pepperweed (Lepidium latifolium) is a potential threat to biodiversity and ecosystem function in the communities that it invades. The mechanism for its successful invasion of riparian and wetland environments includes reproduction via seed and root propagules and its ability to withstand long duration flooding and saline conditions once established. Controlling this species presents a number of challenges for land managers, including difficult property access, limited herbicide choice, and the varied success of weed control measures. In this study, we tested the efficacy of a nonchemical-modified tarp treatment, and compared posttreatment stem counts to herbicide treatments with Mow–glyphosate and chlorsulfuron in a wildland setting. We found that tarping applied in combination with a mow and till treatment was effective at controlling perennial pepperweed at levels similar to herbicide treatments with Mow–glyphosate and with Mow–chlorsulfuron. However, Mow–Till–Tarp treatment is extremely time consuming and has the potential to limit native plant community recovery.


2020 ◽  
Author(s):  
Amy E. Kendig ◽  
Vida J. Svahnstrom ◽  
Ashish Adhikari ◽  
Philip F. Harmon ◽  
S. Luke Flory

AbstractInfectious diseases and invasive species are strong drivers of biological systems that may interact to shift plant community composition. Disease and invasion can each directly suppress native populations, but variation in responses among native species to disease, invasion, and their combined effects are not well characterized. Here, we quantified the responses of three native North American grass species to experimental inoculation with the fungal pathogen Bipolaris gigantea, which has recently emerged in populations of the invasive grass Microstegium vimineum, causing leaf spot disease. In a greenhouse experiment, we examined the direct effects of disease on the native species and the indirect effects of disease on the native species through altered competition with M. vimineum, which was planted at a range of densities. Pathogen inoculation directly affected each of the three native species in unique ways, by increasing, decreasing, or not changing their biomass relative to mock inoculation. Higher M. vimineum densities, however, reduced the biomass of all three native species, regardless of inoculation treatment, suggesting that disease had no indirect effects through altered competition. In addition, competition with M. vimineum suppressed native plant biomass to a greater extent than disease. The differential impacts of B. gigantea and the consistent impacts of M. vimineum on native species biomass suggest that disease may modify native plant community composition while plant invasion may suppress multiple native plant species in systems where these drivers co-occur.


2015 ◽  
Vol 8 (2) ◽  
pp. 219-232 ◽  
Author(s):  
John D. Madsen ◽  
Ryan M. Wersal ◽  
Thomas E. Woolf

Lake Pend Oreille is the largest (36,000 ha or 91,000 ac) freshwater lake in Idaho. Approximately 27% or 10,000 ha of the lake is littoral zone habitat supporting aquatic macrophyte growth. Eurasian watermilfoil has invaded large areas of this littoral zone habitat, with early estimates suggesting approximately 2,000 ha by the mid 2000s. Idaho State Department of Agriculture developed a state-wide eradication program in response to the threats posed by Eurasian watermilfoil, which attempts to quantify Eurasian watermilfoil infestations and its effects on the native plant community. Littoral zone point intercept surveys were conducted in 2007 and 2008 to monitor the trends in aquatic macrophyte community structure and assess management strategies against Eurasian watermilfoil. Lake Pend Oreille has a species-rich aquatic macrophyte community of more than 50 species. Lake-wide, the presence of Eurasian watermilfoil significantly decreased from 2007 (12.5%) to 2008 (7.9%). The native plant community has remained stable from 2007 to 2008 despite lake-wide management activities. In managed areas, the frequency of Eurasian watermilfoil during the 2008 assessment was 23.6% after herbicide applications. This represents a 63% reduction in Eurasian watermilfoil presence from the 2007 (64.5%) survey. When 2,4-D was combined with endothall, the presence of Eurasian watermilfoil declined from 63% (2007) to 36.5% in 2008. Eurasian watermilfoil treated with triclopyr also declined significantly, 64% to 18.2%. When all treatment methods were pooled and compared with areas that were not treated, the presence of Eurasian watermilfoil was significantly greater (52.5%) in untreated areas as opposed to treated areas (23%). The removal of Eurasian watermilfoil resulted in an increase in native species in most areas. Currently, there is as little as 200 ha of Eurasian watermilfoil remaining, which represents an overall reduction of 90% in approximately 7 yr of management.


Sign in / Sign up

Export Citation Format

Share Document