In Vitro Evaluation of the 18 and 36 kg Securos Cranial Cruciate Ligament Repair Systemtm

2005 ◽  
Vol 34 (3) ◽  
pp. 283-288 ◽  
Author(s):  
Max N. Banwell ◽  
Sharon C. Kerwin ◽  
Giselle Hosgood ◽  
Cheryl S. Hedlund ◽  
John B. Metcalf
2012 ◽  
Vol 73 (5) ◽  
pp. 672-680 ◽  
Author(s):  
Nobuo Kanno ◽  
Hirokazu Amimoto ◽  
Yasushi Hara ◽  
Yasuji Harada ◽  
Yoshinori Nezu ◽  
...  

1993 ◽  
Vol 06 (02) ◽  
pp. 85-92 ◽  
Author(s):  
G. L. Coetzee

SummaryThe immediate postoperative biomechanical properties of an “underand-over” cranial cruciate ligament (CCL) replacement technique consisting of fascia lata and the lateral onethird of the patellar ligament, were compared with that of a modified intra- and extracapsular “under-and-over-the-top” (UOTT) method. The right CCL in twelve adult dogs was dissected out and replaced with an autograft. The contralateral, intact CCL served as the control. In group A, the graft was secured to the lateral femoral condyle with a spiked washer and screw. In group B the intracapsular graft was secured to the lateral femoro-fabellar ligament, and the remainder to the patellar tendon. Both CCL replacement techniques exhibited a 2.0 ± 0.5 mm anterior drawer immediately after the operation. After skeletonization of the stifles, the length and cross-sectional area of the intact CCL and CCL substitutes were determined. Each bone-ligament unit was tested in linear tension to failure at a fixed distraction rate of 15 mm/s with the stifle in 120° flexion. Data was processed to obtain the corresponding material parameters (modulus, stress and strain in the linear loading region, and energy absorption to maximum load).The immediate postoperative structural and material properties of the “under-and-over” cranial cruciate ligament replacement technique with autogenous fascia lata, were compared to that of a modified intra- and extracapsular “under-and-over-the-top” (UOTT) method. The combined UOT T technique was slightly stronger (6%), but allowed 2.8 ± 0.9 mm more cranial tibial displacement at maximum linear force.


2020 ◽  
Vol 33 (05) ◽  
pp. 301-307
Author(s):  
Masakazu Shimada ◽  
Tetsuya Takagi ◽  
Nobuo Kanno ◽  
Satoshi Yamakawa ◽  
Hiromichi Fujie ◽  
...  

Abstract Objective The aim of the study was to determine the changes in biomechanical characteristics following tibial plateau levelling osteotomy (TPLO) using simulated manual tests. Study Design Twenty-one stifles from healthy Beagle dogs that had undergone TPLO or had not (control) were first tested in the intact form, and then the cranial cruciate ligament (CrCL) was transected in each to provide four test situations: control-intact, control-CrCL-transected, TPLO-intact and TPLO-CrCL-transected. The stifles were then analysed using a robotic joint biomechanical testing system. The craniocaudal drawer, axial rotation and proximal compression tests were applied. Results The craniocaudal displacement during the drawer test was not significantly different between the control-intact and TPLO-intact. However, the displacement was significantly greater in the TPLO-CrCL-transected than in the control-intact. In the axial rotation test, the internal–external (IE) rotation was significantly greater in the TPLO-intact than in the control-intact. Similarly, the IE rotation was significantly greater in the TPLO-CrCL-transected than in the control-CrCL-transected. In the proximal compression test, craniocaudal displacement was not significantly different among the control-intact, TPLO-intact and TPLO-CrCL-transected. Conclusion These findings suggest that TPLO influences the tension of the collateral ligaments and might generate laxity of the tibiofemoral joint. Instability after the osteotomy might be associated with the progression of osteoarthritis.


2013 ◽  
Vol 13 (02) ◽  
pp. 1350043 ◽  
Author(s):  
NATHAN P. BROWN ◽  
GINA E. BERTOCCI ◽  
DENIS J. MARCELLIN-LITTLE

The objective of this study was to develop a three-dimensional (3D) quasi-static rigid body canine pelvic limb computer model simulating a cranial cruciate ligament (CrCL) intact and CrCL-deficient stifle during walking stance to describe stifle biomechanics. The model was based on a five-year-old neutered male Golden Retriever (33 kg) with no orthopedic or neurologic disease. Skeletal geometry and ligament anatomy determined from computed tomography (CT), optimized muscle forces, motion capture kinematics, and force platform ground reaction forces were used to develop the model. Ligament loads, tibial translation, tibial rotation, and femoromeniscal contact forces were compared across the intact and CrCL-deficient stifle. The CrCL was found to be the primary intact stifle load-bearing ligament, and the caudal cruciate ligament was the primary CrCL-deficient stifle load-bearing ligament. Normalized tibial translation and rotation were 0.61 mm/kg and 0.14 degrees/kg, respectively. Our model confirmed that the CrCL stabilizes the intact stifle and limits tibial translation and rotation. Model verification was confirmed through agreement with experimentally measured kinematics and previous in vivo, in vitro, and mathematical model studies. Parametric analysis indicated outcome measure sensitivity to ligament pre-strain. Computer modeling could be useful to further investigate stifle biomechanics associated with surgical stabilization techniques.


1991 ◽  
Vol 20 (2) ◽  
pp. 85-90 ◽  
Author(s):  
RUSSELL H. PATTERSON ◽  
GAIL K. SMITH ◽  
THOMAS P. GREGOR ◽  
CHARLES D. NEWTON

2011 ◽  
Vol 24 (05) ◽  
pp. 342-349 ◽  
Author(s):  
J. A. Syrcle ◽  
R. M. McLaughlin ◽  
S. H. Elder ◽  
J. R. Butler

SummaryObjectives: To evaluate the effect of tibial tuberosity advancement (TTA) and meniscal release on cranial-caudal and axial rotational displacement during early, middle and late stance phases in the canine cranial cruciate ligament- (CCL) deficient stifle.Study design: In vitro biomechanical study.Methods: Eighteen pelvic limbs were evaluated for the effects of TTA on cranial-caudal displacement and axial rotation under a load equivalent to 30% bodyweight, and under the following treatment conditions: normal (intact CCL), CCL deficient, TTA-treated (CCL deficient + TTA), and meniscal release (TTA treated + meniscal release). The limbs were evaluated in the early, middle, and late stance phases using electromagnetic tracking sensors to determine cranial tibial displacement and tibial rotation relative to the femur.Results: Transection of the CCL resulted in significant cranial tibial displacement during early, middle, and late stance (p < 0.0001) and significant internal rotation during early (p = 0.049) and middle stance (p = 0.0006). Performance of TTA successfully eliminated cranial tibial displacement in early, middle, and late stance (p <0.0001) however, the TTA was unsuccessful in normalizing axial rotation in middle stance (p = 0.030). Meniscal release had no effect on cranial-caudal or rotational displacement when performed in conjunction with the TTA.Clinical significance: Tibial tuberosity advancement effectively eliminates cranial tibial displacement during early, middle and late stance however, TTA failed to provide rotational stability in mid-stance.


Sign in / Sign up

Export Citation Format

Share Document