DEVELOPMENT OF A CANINE STIFLE COMPUTER MODEL TO EVALUATE CRANIAL CRUCIATE LIGAMENT DEFICIENCY

2013 ◽  
Vol 13 (02) ◽  
pp. 1350043 ◽  
Author(s):  
NATHAN P. BROWN ◽  
GINA E. BERTOCCI ◽  
DENIS J. MARCELLIN-LITTLE

The objective of this study was to develop a three-dimensional (3D) quasi-static rigid body canine pelvic limb computer model simulating a cranial cruciate ligament (CrCL) intact and CrCL-deficient stifle during walking stance to describe stifle biomechanics. The model was based on a five-year-old neutered male Golden Retriever (33 kg) with no orthopedic or neurologic disease. Skeletal geometry and ligament anatomy determined from computed tomography (CT), optimized muscle forces, motion capture kinematics, and force platform ground reaction forces were used to develop the model. Ligament loads, tibial translation, tibial rotation, and femoromeniscal contact forces were compared across the intact and CrCL-deficient stifle. The CrCL was found to be the primary intact stifle load-bearing ligament, and the caudal cruciate ligament was the primary CrCL-deficient stifle load-bearing ligament. Normalized tibial translation and rotation were 0.61 mm/kg and 0.14 degrees/kg, respectively. Our model confirmed that the CrCL stabilizes the intact stifle and limits tibial translation and rotation. Model verification was confirmed through agreement with experimentally measured kinematics and previous in vivo, in vitro, and mathematical model studies. Parametric analysis indicated outcome measure sensitivity to ligament pre-strain. Computer modeling could be useful to further investigate stifle biomechanics associated with surgical stabilization techniques.

2011 ◽  
Vol 24 (05) ◽  
pp. 342-349 ◽  
Author(s):  
J. A. Syrcle ◽  
R. M. McLaughlin ◽  
S. H. Elder ◽  
J. R. Butler

SummaryObjectives: To evaluate the effect of tibial tuberosity advancement (TTA) and meniscal release on cranial-caudal and axial rotational displacement during early, middle and late stance phases in the canine cranial cruciate ligament- (CCL) deficient stifle.Study design: In vitro biomechanical study.Methods: Eighteen pelvic limbs were evaluated for the effects of TTA on cranial-caudal displacement and axial rotation under a load equivalent to 30% bodyweight, and under the following treatment conditions: normal (intact CCL), CCL deficient, TTA-treated (CCL deficient + TTA), and meniscal release (TTA treated + meniscal release). The limbs were evaluated in the early, middle, and late stance phases using electromagnetic tracking sensors to determine cranial tibial displacement and tibial rotation relative to the femur.Results: Transection of the CCL resulted in significant cranial tibial displacement during early, middle, and late stance (p < 0.0001) and significant internal rotation during early (p = 0.049) and middle stance (p = 0.0006). Performance of TTA successfully eliminated cranial tibial displacement in early, middle, and late stance (p <0.0001) however, the TTA was unsuccessful in normalizing axial rotation in middle stance (p = 0.030). Meniscal release had no effect on cranial-caudal or rotational displacement when performed in conjunction with the TTA.Clinical significance: Tibial tuberosity advancement effectively eliminates cranial tibial displacement during early, middle and late stance however, TTA failed to provide rotational stability in mid-stance.


2003 ◽  
Vol 24 (8) ◽  
pp. 614-622 ◽  
Author(s):  
Christof Hurschler ◽  
Judith Emmerich ◽  
Nikolaus Wülker

An in vitro simulator was developed to reproduce the kinematics and kinetics of stance phase gait on cadaver foot specimens. Ground reaction force was applied by a tilting angle- and force-controlled translation stage upon which a pressure measuring platform was mounted; tibial rotation was reproduced by a servomotor. Force was applied to nine tendons of the foot flexor and extensor muscle groups, and three-dimensional hind- and forefoot motion was measured. The model was verified based on in vivo kinematic and kinetic measurements. It was found to be in good general agreement with some exceptions which include a slightly more lateral gait line.


2014 ◽  
Vol 42 (03) ◽  
pp. 151-156 ◽  
Author(s):  
J. Rey ◽  
M. S. Fischer ◽  
P. Böttcher

Summary Objective: This in vivo study qualitatively describes the sagittal motion pattern of the cranial cruciate ligament (CrCL) insufficient canine stifle in operated and unoperated joints with cranio-caudal laxity on palpation. Material and methods: Sagittal stifle kinematics were recorded in vivo in dogs (> 15 kg BW) with unilateral (n = 7) or bilateral (n = 6) complete CrCL rupture and positive cranial drawer test as well as two sound control dogs using uniplanar fluoroscopic kinematography with the dogs walking on a treadmill. Stifle stability and sagittal motion pattern of the femur and the tibia were determined by visual inspection of the fluoroscopic video sequences. Results: Control dogs showed no cranio-caudal instability, identical to the contralateral stifles of the dogs with unilateral rupture. All unoperated stifles with CrCL rupture (n = 6) showed caudal slippage of the femur at the beginning of the stance phase. Of the 13 operated stifles (TightRope: n = 1, tibial tuberosity advancement, TTA: n = 6, tibial plateau leveling osteotomy, TPLO: n = 5, cranial closing wedge osteotomy, CCWO: n = 1) nine were unstable, showing the same motion pattern as the unoperated stifles. Conclusion: In the CrCL insufficient stifle with in vivo cranio-caudal instability caudal slippage of the distal femur at tow touch is the predominant motion pattern. Clinical significance: The discrepancy between in vivo motion pattern and in vitro simulation of CrCL insufficiency in which cranial tibial subluxation is the predominant sagittal motion pattern warrants further studies.


1993 ◽  
Vol 06 (02) ◽  
pp. 85-92 ◽  
Author(s):  
G. L. Coetzee

SummaryThe immediate postoperative biomechanical properties of an “underand-over” cranial cruciate ligament (CCL) replacement technique consisting of fascia lata and the lateral onethird of the patellar ligament, were compared with that of a modified intra- and extracapsular “under-and-over-the-top” (UOTT) method. The right CCL in twelve adult dogs was dissected out and replaced with an autograft. The contralateral, intact CCL served as the control. In group A, the graft was secured to the lateral femoral condyle with a spiked washer and screw. In group B the intracapsular graft was secured to the lateral femoro-fabellar ligament, and the remainder to the patellar tendon. Both CCL replacement techniques exhibited a 2.0 ± 0.5 mm anterior drawer immediately after the operation. After skeletonization of the stifles, the length and cross-sectional area of the intact CCL and CCL substitutes were determined. Each bone-ligament unit was tested in linear tension to failure at a fixed distraction rate of 15 mm/s with the stifle in 120° flexion. Data was processed to obtain the corresponding material parameters (modulus, stress and strain in the linear loading region, and energy absorption to maximum load).The immediate postoperative structural and material properties of the “under-and-over” cranial cruciate ligament replacement technique with autogenous fascia lata, were compared to that of a modified intra- and extracapsular “under-and-over-the-top” (UOTT) method. The combined UOT T technique was slightly stronger (6%), but allowed 2.8 ± 0.9 mm more cranial tibial displacement at maximum linear force.


2018 ◽  
Vol 49 (6) ◽  
pp. 2304-2319 ◽  
Author(s):  
Zhenhui Lu ◽  
Qin Liu ◽  
Lei Liu ◽  
Huayu Wu ◽  
Li Zheng ◽  
...  

Background/Aims: 3, 4, 5-trihydroxy-N-{4-[(5-methylisoxazol-3-yl) sulfamoyl] phenyl} benzamide (JEZTC), synthesized from gallic acid (GA) and sulfamethoxazole (SMZ), was reported with chondroprotective effects. However, the effects of JEZTC on osteoarthritis (OA) are still unclear. The goal of this study was to investigate the anti-osteoarthritic properties of JEZTC on interleukin-1-beta (IL-1β) stimulated chondrocytes in vitro and a rabbit anterior cruciate ligament transaction (ACLT) OA model in vivo. Methods: Changes in matrix metalloproteinases (MMPs) and apoptosis genes (bax, caspase 3 and tnf-α) and OA-specific protein (MMP-1) expression in vitro and in vivo were detected by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry. The production of reactive oxygen species (ROS) were investigated upon the treatment of JEZTC in chondrocytes processed with IL-1β in vitro and OA in vivo. Effect of JEZTC on OA was further studied by the macroscopic and histological evaluation and scores. The key proteins in signaling pathways inMAPK/P38, PI3KAkt and NF-κB also determined using western blot (WB) analysis. Results: JEZTC could significantly suppress the expression of MMPs and intracellular ROS, while meaningfully increase the gene expression of tissue inhibitor of metalloproteinase-1 (TIMP-1). Moreover, there was less cartilage degradation in JEZTC group compared with the phosphate-buffered saline (PBS) group in vivo. Results also indicated that JEZTC exerts effect on OA by regulating MAPKs and PI3K/Akt signaling pathways to activate NF-κB pathway, leading to the down-regulation of MMPs. The chondro-protective effect of JEZTC may be related with its ability to inhibit chondrocyte apoptosis by reduction of ROS production. Conclusion: JEZTC may be a possible therapeutic agent in the treatment of OA.


2020 ◽  
Vol 33 (05) ◽  
pp. 301-307
Author(s):  
Masakazu Shimada ◽  
Tetsuya Takagi ◽  
Nobuo Kanno ◽  
Satoshi Yamakawa ◽  
Hiromichi Fujie ◽  
...  

Abstract Objective The aim of the study was to determine the changes in biomechanical characteristics following tibial plateau levelling osteotomy (TPLO) using simulated manual tests. Study Design Twenty-one stifles from healthy Beagle dogs that had undergone TPLO or had not (control) were first tested in the intact form, and then the cranial cruciate ligament (CrCL) was transected in each to provide four test situations: control-intact, control-CrCL-transected, TPLO-intact and TPLO-CrCL-transected. The stifles were then analysed using a robotic joint biomechanical testing system. The craniocaudal drawer, axial rotation and proximal compression tests were applied. Results The craniocaudal displacement during the drawer test was not significantly different between the control-intact and TPLO-intact. However, the displacement was significantly greater in the TPLO-CrCL-transected than in the control-intact. In the axial rotation test, the internal–external (IE) rotation was significantly greater in the TPLO-intact than in the control-intact. Similarly, the IE rotation was significantly greater in the TPLO-CrCL-transected than in the control-CrCL-transected. In the proximal compression test, craniocaudal displacement was not significantly different among the control-intact, TPLO-intact and TPLO-CrCL-transected. Conclusion These findings suggest that TPLO influences the tension of the collateral ligaments and might generate laxity of the tibiofemoral joint. Instability after the osteotomy might be associated with the progression of osteoarthritis.


Sign in / Sign up

Export Citation Format

Share Document